58/100 = 29/50; 42/100 = 21/50. Чтобы получились точные значения 58% и 42%, должно быть минимум 50 чел, тогда 29 чел = 58%, 21 чел = 42%. а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел. Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%. Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%. 42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%. ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия: 1) n*0,58 = k,p ~ k (целое) 2) k/n ~ 0,58 (при округлении до сотых) Те же 2 условия должны соблюдаться для 0,42. Опытным путем мне удалось найти минимальное количество - 12. 12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58% 12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Чтобы получились точные значения 58% и 42%, должно быть минимум
50 чел, тогда 29 чел = 58%, 21 чел = 42%.
а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел.
Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%.
Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%.
42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%.
ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия:
1) n*0,58 = k,p ~ k (целое)
2) k/n ~ 0,58 (при округлении до сотых)
Те же 2 условия должны соблюдаться для 0,42.
Опытным путем мне удалось найти минимальное количество - 12.
12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58%
12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число