Рисуем окружность, отмечаем центр, строим хорду -основа решения задачи. Важное замечание: 1) расстояние от точки до прямой -перпендикуляр. 2) если соединить центр окружности и точки пересечения хорды с окружностью, то мы получим равнобедренный треугольник с бокоой стороной равной радиусу окружности. т.к. этот треугольник -р/б, а расст от центра окр до хорды - перпендикуляр, то он делит хорду пополам. обозначим половину хорды -х теперь у нас есть первый катет-расст от центра ок до хорды=5 второй катет-половина хорды-х и гипотенуза =радиусу окр=13 по теореме пифагора: 13^2=25+x^2 169-25=x^2 144=x^2 x=12 2x=24 ответ: длина хорды равна 24 см
Важное замечание: 1) расстояние от точки до прямой -перпендикуляр.
2) если соединить центр окружности и точки пересечения хорды с окружностью, то мы получим равнобедренный треугольник с бокоой стороной равной радиусу окружности.
т.к. этот треугольник -р/б, а расст от центра окр до хорды - перпендикуляр, то он делит хорду пополам.
обозначим половину хорды -х
теперь у нас есть
первый катет-расст от центра ок до хорды=5
второй катет-половина хорды-х
и гипотенуза =радиусу окр=13
по теореме пифагора:
13^2=25+x^2
169-25=x^2
144=x^2
x=12
2x=24
ответ: длина хорды равна 24 см
---
f '(x) - ? f '(xo) -?
f '(x) =(3sinx -cosx +tqx)' =(3sinx)' -(cosx)' +(tqx) ' =
3*(sinx)' +sinx +1/cos²x= 3cosx +sinx +1/cos²x.
f '(xo) =f '(π/3) =3cosπ/3 +sinπ/3 +1/cos²π/3 =3*1/2 +(√3)/2 +1/(1/2)²=
1,5 +(√3)/2 +4 =5,5+ (√3)/2.
* * * f(xo) =f (π/3)=3sinπ/3 -cosπ/3 +tqπ/3 =(3√3)/2 -1/2 + √3 =(5√3)/2 -0,5.
б) f(x) =2sin3x-3cosx/sin2x .
f '(x) -?
Сначала можно упростить функция ( необязательно)
f(x) =2sin3x-3cosx/sin2x =2sin3x-3cosx/2sinxcosx =2sin3x-(3/2)*(sinx)^ (-1).
f '(x) =(2sin3x-(3/2)*(sinx)^ (-1) )' =(2cos3x)*(3x)' -(3/2)*(-1)*sinx^(-2)*(sinx)'=
6cos3x +1,5cosx/sin²x.
* * иначе (-3cosx/sin2x)' = (-3)*( (cosx)'*sin2x -cosx*(sin2x)' ) / sin²2x = (-3)(-sinx*sin2x -cosxcos2x*(2x)' )/sin²2x = 3(sinx*sin2x +2cosxcos2x)/sin²2x
=3(sinx*sin2x +cosxcos2x +cosxcos2x) /sin²2x = 3(cosx+cosxcos2x) /sin²2x = 3cosx(1+cos2x) /sin²2x = 3cosx*2cos²x) /4sin²x*cos²x = 1,5cosx/sin²x