После того, как он за весну похудел на 20%, его вес составил:
100% - 20% = 80% (от начального).
Принимаем полученный вес равный 100%
После того, как он поправился на 30%, его вес составил:
100% + 30% = 130% (от предыдущего значения).
После очередного похудания на 20% вес был равен 80% (от веса летом).
После зимы вес составил:
100% + 10% = 110% от веса осенью.
Получим: 80% * 130% / 100% = 104% (вес летом по отношению к начальному).
104% * 80% / 100% = 83,2% (вес осенью).
83,2% * 110% / 100% = 91,52% (вес зимой).
Поскольку 91,52% меньше чем 100%, его вес снизился.
2. Пусть стороны прямоугольника = х и у. S1=xy. после увеличения одна из сторон стала 1,1x, другая осталась у. S2=1,1xy. S2 - S1= 1,1ху - ху = 0,1ху. Значит, площадь увеличилась на 10%. Значения не имеет, какие стороны взять. Попробуй проделать то же самое со стороной у
3. Для решения задачи обозначим длину и ширину прямоугольника как a и b метров соответственно.
Тогда площадь прямоугольника составит:
S = ab м².
Длину данного прямоугольника увеличим на 20%, (100% + 20% = 120%).
а * 120% = 1,2а.
А его ширину уменьшим на 20%, (100% - 20% = 80%).
b * 80% = 0,8b.
Вычислим чему будет равна площадь нового прямоугольника:
1)
Пусть 1 кг апельсинов стоит х рублей, а 1 кг лимонов у рублей. Тогда 7х+4у=700, а 5х-2у=160. Составим и решим систему уравнений:
7х+4у=700
5х-2у=160 |*2
7х+4у=700
10х-4у=320
17х=700+320
5х-2у=160
17х=1020
2у=5х-160
х=60
у=(5*60-160):2
х=60 руб цена 1 кг апельсинов
у=70 руб цена 1 кг лимонов
ответ 60 руб и 70 руб
2)
Пусть Х-ткань на 1плащ, а У- ткань на 1куртку. Система уравнений:
Х+3У=9
2Х+5У=16
Х=9-3У
2Х+5У=16
2(9-3У)+5У=16
18-6У+5У=16
-У=-2
У=2
Х=9-3*2=3
Проверка:
3+3*2=9
2*3+5*2=16 - решение верное.
ответ:на 1 плащ нужно 3м, на 1 куртку 2 м.
3)
Надо обозначить гантели через x, а гири через y, и составить систему уравнений:
2y+3x=47,
3y-6x=18;
2y+3x=47,
y=6+2x;
2(6+2x)+3x=47
12+4x+3x=47
7x=47-12
7x=35
x=5 (кг - вес гантели)
y=6+2x=6+10=16 (кг - вес гири)
ответ: гантели- 5кг, гири- 16кг.
4)
1. Обозначим кол-во в Первом ящике - х
во Втором ящике - у
Теперь составим уравнения, в зависимости из условий
х-45 = у+45
(х+20) = 3*(у-20)
Из первого выразим х и подставим во второе уравнение
х = у+90
(у+90+20) = 3*(у-20)
у+110 = 3у-60
2у = 170
у = 85 ябл - во втором ящике.
Теперь подставим у в уравнение с х и найдем х
х = у+90
х = 85+90 = 175 ябл - в первом ящике.
ответ : в первом ящике 175 яблок, а во втором - 85 яблок.
5)
6(х+у)=9(х-у)
3(х+у)+5(х-у)=76
2х+2у=3х-3у
3х+3у+5х-5у=76
5у=х
8х-2у=76
х=5у
4х-у=38
20у-у=38
19у=38
у=2
х=10
10 км/ч скорость катера
2 км/ч скорость течения
Вроде как-то так
Объяснение:
1. Запишем начальный вес Жени как 100%.
После того, как он за весну похудел на 20%, его вес составил:
100% - 20% = 80% (от начального).
Принимаем полученный вес равный 100%
После того, как он поправился на 30%, его вес составил:
100% + 30% = 130% (от предыдущего значения).
После очередного похудания на 20% вес был равен 80% (от веса летом).
После зимы вес составил:
100% + 10% = 110% от веса осенью.
Получим: 80% * 130% / 100% = 104% (вес летом по отношению к начальному).
104% * 80% / 100% = 83,2% (вес осенью).
83,2% * 110% / 100% = 91,52% (вес зимой).
Поскольку 91,52% меньше чем 100%, его вес снизился.
2. Пусть стороны прямоугольника = х и у. S1=xy. после увеличения одна из сторон стала 1,1x, другая осталась у. S2=1,1xy. S2 - S1= 1,1ху - ху = 0,1ху. Значит, площадь увеличилась на 10%. Значения не имеет, какие стороны взять. Попробуй проделать то же самое со стороной у
3. Для решения задачи обозначим длину и ширину прямоугольника как a и b метров соответственно.
Тогда площадь прямоугольника составит:
S = ab м².
Длину данного прямоугольника увеличим на 20%, (100% + 20% = 120%).
а * 120% = 1,2а.
А его ширину уменьшим на 20%, (100% - 20% = 80%).
b * 80% = 0,8b.
Вычислим чему будет равна площадь нового прямоугольника:
S = 1,2a * 0,8b = 0,96аb м².
Вычислим разницу между площадями:
0,96аb - ab = -0,04аb м².
ответ: площадь прямоугольника уменьшилась на 4%.