В решении.
Объяснение:
Найти значение выражения:
[(5х+у)/(х-5у) + (5х-у)/(х+5у)] : [(х²+у²)/(х²-25у²)]= 10.
1) [(5х+у)/(х-5у) + (5х-у)/(х+5у)]=
общий знаменатель (х-5у)(х+5у), надписываем над числителями дополнительные множители:
[(х+5у)*(5х+у) + (х-5у)*(5х-у)] / (х-5у)(х+5у)=
=(5х²+ху+25ху+5у² + 5х²-ху-25ху+5у²) / (х-5у)(х+5у)=
=(10х²+10у²) / (х-5у)(х+5у)=
в числителе вынести 10 за скобки, в знаменателе свернуть разность квадратов:
=10*(х²+у²)/(х²-25у²);
2) [10*(х²+у²)/(х²-25у²)] : [(х²+у²)/(х²-25у²)]=
= [10*(х²+у²) * (х²-25у²)] / [(х²-25у²) * (х²+у²)]=
сократить (разделить) (х²+у²) и (х²+у²) на (х²+у²), (х²-25у²) и (х²-25у²) на (х²-25у²):
=10.
-3.
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
В решении.
Объяснение:
Найти значение выражения:
[(5х+у)/(х-5у) + (5х-у)/(х+5у)] : [(х²+у²)/(х²-25у²)]= 10.
1) [(5х+у)/(х-5у) + (5х-у)/(х+5у)]=
общий знаменатель (х-5у)(х+5у), надписываем над числителями дополнительные множители:
[(х+5у)*(5х+у) + (х-5у)*(5х-у)] / (х-5у)(х+5у)=
=(5х²+ху+25ху+5у² + 5х²-ху-25ху+5у²) / (х-5у)(х+5у)=
=(10х²+10у²) / (х-5у)(х+5у)=
в числителе вынести 10 за скобки, в знаменателе свернуть разность квадратов:
=10*(х²+у²)/(х²-25у²);
2) [10*(х²+у²)/(х²-25у²)] : [(х²+у²)/(х²-25у²)]=
= [10*(х²+у²) * (х²-25у²)] / [(х²-25у²) * (х²+у²)]=
сократить (разделить) (х²+у²) и (х²+у²) на (х²+у²), (х²-25у²) и (х²-25у²) на (х²-25у²):
=10.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.