Некто Павел программист. В понедельник перед - началом рабочего дня у него в коде некоторой программы было 17700 строк. К вечеру он оптимизировал кодовую базу и оставил 0,92 строк кода от того, что было утром. В течение вторника он начал реализовывать новый метод, что увеличило длину программы на 25%. В среду он весь день исправлял ошибки в том, что написал во вторник, и это ykopoTИЛO KOД Hа 575 строк. В четверг было собрание, поэтому кода почти не добавилось: всего 345 новых строк. А в пятницу нужно было интегрировать новый метод в проект, поэтому в кратчайшие, как обычно это бывает, сроки Павел увеличил длину программы в 1,6 раза. На сколько строк изменилась кодовая база к вечеру пятницы в сравнении с утром понедельника?
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),
Значит,скорость по течению равна x + 1
скорость против течения равна x - 1
расстояние одинаковое 6 км
Находим время:
по течению 6 / (x + 1)
против течения 6/ ( x - 1)
4ч 30 мин. = 4 1/2 часа = 9/2
Составим уравнение:
6/(x+ 1) + 6/(x - 1) = 9/2
(6x - 6 + 6x + 6) / (x - 1)(x+ 1) =9/2
12x / (x² - 1) = 9/2
9( x² - 1) = 12x × 2
9x² - 9 = 24x
9x² - 24x - 9 = 0
3x² - 8x - 3 = 0
D = b² - 4ac = 64 - 12×(-3)= 64 + 36 = 100 = 10²
x1 = ( 8 + 10) / 6 = 3
x2 = ( 8 - 10) / 6 = - 1/3 - меньше нуля - не подходит,значит,
собственная скорость байдарки равна 3 км/ч.
ответ: 3 км/ч.