Нужно 1.функция задана формулой y=x^2+px+q.найдите p и q,если: а)график функции пересекает оси координат в точках(0; 8)и(4; 0) б)наименьшее значение, равное -5, функция принимает x=2. №2 определите значение а, при которых график функции y=2x^2+x+a лежит выше оси абсцисс. №3 задайте формулой квадратичную функцию, график которой проходит через точки а(3; 3), в(-1; 3), с(5; 15)
a)
Подставим значения точек в формулу и найдём p и q:
б)
Вершину параболы(наименьшее значение, если коэффициент при x² положительный) можно найти по формуле:
найдём q подставив точку (2;-5) в функцию:
2)
График лежит выше оси абсцисс, когда отрицателен его дискриминант и коэффициент при x² положительный. У нас коэффициент положительный поэтому смотрим когда дискриминант отрицателен.
3)
Подставим все значение в квадратичную функцию, общий вид которой y=ax²+bx+c, составим систему и найдём значения коэффициентов.
{3=a·3²+b·3+c
{3=a·(-1)²+b·(-1)+c
{15=a·5²+b·5+c
↓
{3=9a+3b+c
{3=a-b+c
{15=25a+5b+c
↓от первого отнимем второе уравнение
{3-3=9a-a+3b-(-b)+c-c
{3=a-b+c
{15=25a+5b+c
↓
{0=8a+4b
{3=a-b+c
{15=25a+5b+c
↓Выражаем b и c через а
{b=-2a
{c=3-3a
{15=25a+5·(-2a)+(3-3а)
↓Отдельно решим 3 уравение
25a-10a-3a=15-3
12a=12
a=1
↓Найдём b и c из первых двух уравнений
b=-2·1=-2
c=3-3·1=0
Получаем квадратичную функцию:
y=x²-2x