Заметим, что решающую роль на поведение функции (ее возрастание или убывание) всегда оказывает знак при . Тогда функция убывает на промежутке , а возрастает на . Значит единственное решение достигается тогда и только тогда, когда .
Получили уравнение:
Итого при исходное уравнение имеет единственное решение.
Второй :
Построим график этого уравнения в координатах :
(см. прикрепленный файл)
Тогда ответом будет .
Третий :
Знаем, что при :
Тогда единственное решение возможно, только если .
(см. объяснение)
Объяснение:
Первый :
Рассмотрим функцию .
Тогда уравнение примет вид .
Заметим, что решающую роль на поведение функции (ее возрастание или убывание) всегда оказывает знак при . Тогда функция убывает на промежутке , а возрастает на . Значит единственное решение достигается тогда и только тогда, когда .
Получили уравнение:
Итого при исходное уравнение имеет единственное решение.
Второй :
Построим график этого уравнения в координатах :
(см. прикрепленный файл)
Тогда ответом будет .
Третий :
Знаем, что при :
Тогда единственное решение возможно, только если .
Получили уравнение:
Так как .
Задание выполнено!
-62
Объяснение:
f(x)=ax²+bx+c
Определим коэффициенты a, b, с.
1) Коэффициент а находим по формуле y=a(x-m)²+n, где (m;n) - координаты вершины параболы, а (х;у) - координата любой точки параболы, например, (1;1).
m=2; n=2
a(1-2)²+2=1
a(-1)²=-1
a*1=-1
a=-1
2) Коэффициент b находим из формулы для вершины параболы:
-b/2a = m
b = -m*2a =-2*2*(-1)=4
3) Коэффициент с найдём как ординату пересечения параболы с осью Оу. Искомая точка (0;-2), значит, с=-2
4) Запишем уравнение параболы: f(x) = -x²+4x-2
5) Находим f(10):
f(10)= -10²+4*10-2 = -100+40-2 = -62