Один процессор выполняет некоторую работу на 11 минут быстрее другого процессора. Работая вместе, два процессора справляются с этой работой за 30 минут. За сколько минут справится с работой каждый процессор? Укажите систему уравнений, с которой можно решить эту задачу.
А). Примем начальный момент времени за базовый, в котором цена муки равна 2,5 руб./кг, цена яблок - 5 руб./кг.
Тогда цена яблок в текущем периоде составит:
5*1,2 = 6 руб./кг
Дефлятор ВВП = (2*2,5) + (3*6) / (2*2,5) + (3*5) * 100% = 23/20*100% = 115%
Так как структура и величина потребительской корзины не изменились, то алгоритмы расчета индекса потребительских цен (ИПЦ) и дефлятора (Дф) совпадают.
Темп инфляции за исследуемый период времени равен:
(115-100)/100*100% = 15%.
Б) 5*3 = 15 руб./кг
Дефлятор ВВП = (2*2,5) + (3*15) / (2*2,5) + (3*5) * 100% = 50/20*100% = 250%
(250-100)/100*100% = 150%.
1) ОДЗ: cos(x) <> 0 => x <> p/2 + 2pn
Домножим обе части равенства на cos(x) <> 0:
2с^2 - 2sc + s - c = 0
(c - s)(2c - 1) = 0
cos(x) = sin(x) => 1 - tg(x) = 0 => tg(x) = 1 => x = p/4 + pn
2c - 1 = 0
cos(x) = 0.5 => x = +-p/3 + 2pn
В итоге x = +-p/3 + 2pn, x = p/4 + pn.
Так как нас интересуют значения х на промежутке
[3p/2;3p], т.е 1.5р...3р, то подходят 2p - p/3, 2p + p/4, 2p + p/3.
ответ: 2p + p/3, 2p - p/3, 2p + p/4.
2) sinx+1/1-cos2x=sinx+1/1+cos(p/2+x)
(s+1)/(2*s*s) = (s + 1)/(1 - s)
ОДЗ:
sin(x) <> 0 => x <> pn
sin(x) <> 1 => x <> p/2 + 2pn
s + 1 = 0 => sin(x) = -1 => x = 2pn - p/2
2s*s = 1 - s
2s*s + s - 1 = 0
Решим как квадратное уравнение:
s1 = 2/4 = 0.5 => sin(x) = 0.5 => x = (-1)^n*(p/6) + pn
s2 = -4/4 = -1 (такие корни уже были)
В итоге: x = 2pn - p/2, x = (-1)^n*(p/6) + pn.
Причем x <> pn, x <> p/2 + 2pn.
По условию нужно выбрать корни на промежутке [-3p/2;-p/2], т. е. от -1.5р до -0.5р.
2pn - p/2:
при n = 1: x = -1.5p, но так как x <> p/2 + 2pn, этот корень не подходит.
при n = 0: x = -0.5p.
(-1)^n*(p/6) + pn:
при n = -1: x = -p - p/6.
ответ: x = -0.5p, x = -p - p/6.