распишем как косинус суммы
5(cos(5pi/2+a))=5(cos(5pi/2)cosa-sinasin(5pi/2))=
=|мы знаем, что cos(npi/2)=0, где n любое целое число, поэтому мы имеем |=
-5*sina*sin(5pi/2)
sin(5pi/2) = sin(5pi/2-2*pi)= sin(5pi/2-4*pi/2)=sin(pi/2)=1
то мы имеем просто
-5*sina
(cosa)^2+(sina)^2=1
sina=(1- (cosa)^2)^0.5=(1-16/25)^0.5=((25-16)25)^0.5=(9/25)^0.5=3/5
теперь знак
ткак как у нас a принадлежит (pi ; 3pi/2), то синус в этой области отрицательный
тогда sina=-3/5
и ответ -5*(-3/5)=3
то есть имеем такой ответ 5(cos(5pi/2+a))=3
(р-3)х^2-4рх+8р=0,
D=(-4p)^2-4(p-3)8p=16p^2-32p^2+96p=96p-16p^2,
D>0,
96p-16p^2>0,
96p-16p^2=0,
16p(6-p)=0,
p=0 или p=6,
-16p(p-6)>0,
p(p-6)<0,
0<p<6, p∈(0;6);
x1=(4p-4√(6p-p^2))/(2(p-3))>0,
x2=(4p+4√(6p-p^2))/(2(p-3))>0,
p-3≠0, p≠3;
(2p-2√(6p-p^2))(p-3)>0,
(2p+2√(6p-p^2))(p-3)>0,
2p-2√(6p-p^2)>0,
2p+2√(6p-p^2)>0,
p-3>0,
√(6p-p^2)<p,
√(6p-p^2)>-p,
p>3,
6p-p^2<p^2,
2p^2-6p>0,
2p^2-6p=0,
2p(p-3)=0,
p=0 или р=3,
p(p-3)>0,
p<0, p>3, p∈(-∞;0)U(3;+∞);
p∈(3,6);
2p-2√(6p-p^2)<0,
2p+2√(6p-p^2)<0,
p-3<0,
√(6p-p^2)>p,
√(6p-p^2)<-p,
p<3,
2p^2-6p<0,
p<0,
0<p<3,
p∈Ф.
ответ: p∈(3,6).
распишем как косинус суммы
5(cos(5pi/2+a))=5(cos(5pi/2)cosa-sinasin(5pi/2))=
=|мы знаем, что cos(npi/2)=0, где n любое целое число, поэтому мы имеем |=
-5*sina*sin(5pi/2)
sin(5pi/2) = sin(5pi/2-2*pi)= sin(5pi/2-4*pi/2)=sin(pi/2)=1
то мы имеем просто
-5*sina
(cosa)^2+(sina)^2=1
sina=(1- (cosa)^2)^0.5=(1-16/25)^0.5=((25-16)25)^0.5=(9/25)^0.5=3/5
теперь знак
ткак как у нас a принадлежит (pi ; 3pi/2), то синус в этой области отрицательный
тогда sina=-3/5
и ответ -5*(-3/5)=3
то есть имеем такой ответ 5(cos(5pi/2+a))=3
(р-3)х^2-4рх+8р=0,
D=(-4p)^2-4(p-3)8p=16p^2-32p^2+96p=96p-16p^2,
D>0,
96p-16p^2>0,
96p-16p^2=0,
16p(6-p)=0,
p=0 или p=6,
-16p(p-6)>0,
p(p-6)<0,
0<p<6, p∈(0;6);
x1=(4p-4√(6p-p^2))/(2(p-3))>0,
x2=(4p+4√(6p-p^2))/(2(p-3))>0,
p-3≠0, p≠3;
(2p-2√(6p-p^2))(p-3)>0,
(2p+2√(6p-p^2))(p-3)>0,
2p-2√(6p-p^2)>0,
2p+2√(6p-p^2)>0,
p-3>0,
√(6p-p^2)<p,
√(6p-p^2)>-p,
p>3,
6p-p^2<p^2,
2p^2-6p>0,
2p^2-6p=0,
2p(p-3)=0,
p=0 или р=3,
p(p-3)>0,
p<0, p>3, p∈(-∞;0)U(3;+∞);
p∈(3,6);
2p-2√(6p-p^2)<0,
2p+2√(6p-p^2)<0,
p-3<0,
√(6p-p^2)>p,
√(6p-p^2)<-p,
p<3,
2p^2-6p<0,
p<0,
p<3,
0<p<3,
p<0,
p<3,
p∈Ф.
ответ: p∈(3,6).