1 комбинат: выпускает 2/10=0,2 от всей продукции (2+3+5=10) 2 комбинат: выпускает 3/10=0,3 от всей продукции 3 комбинат: выпускает 5/10=0,5 от всей продукции Соответственно, вероятность того, что продукция от 1 комбината равна 0,2 , от 2 комбината - 0,3 , от 3 комбината = 0,5 . Вероятность того, что продукция высшего качества от 1 комбината = 0,3 (30%). от 2 комбината = 0,4 (40%) , от 3 комбината = 0,6 (60%) . а) Р=0,2*0,3+0,3*0,4+0,5*0,6=0,48 (формула полной вероятности) б) Р=(0,3*0,4)/0,48 =0,25 (формула Байеса)
2 комбинат: выпускает 3/10=0,3 от всей продукции
3 комбинат: выпускает 5/10=0,5 от всей продукции
Соответственно, вероятность того, что продукция от 1 комбината равна 0,2 , от 2 комбината - 0,3 , от 3 комбината = 0,5 .
Вероятность того, что продукция высшего качества от 1 комбината = 0,3 (30%). от 2 комбината = 0,4 (40%) , от 3 комбината = 0,6 (60%) .
а) Р=0,2*0,3+0,3*0,4+0,5*0,6=0,48 (формула полной вероятности)
б) Р=(0,3*0,4)/0,48 =0,25 (формула Байеса)
ответ:Раскроем скобки:
Тогда наша задача сводится к тому, чтобы доказать, что (n-1)(n+1) при любом нечетном n кратно 8.
Любое нечётное число можно представить в виде: n = 2k+1, k∈Z (Z - множество целых чисел)
Теперь задача сводится к тому, чтобы доказать, что k(k+1) при любом целом k кратно 2.
Пусть k = 0, тогда произведение равно 0 и отсюда следует, что произведение кратно 2;
Пусть k - нечётное число, тогда k+1 - чётное. Произведение не чётного числа на чётное будет чётным и, следовательно, кратным 2.
Аналогично если k - чётное число.
На основании вышеизложенного приходим к выводу, что (4n+1)² – (n+4)² при любом нечётном n кратно 120.
Объяснение: