Побудуйте а) фігуру, семетричну відрізку AB відносно точки O; б) фігуру семетричну трикутнику ABC відносно прямої l в) трикутник, у який переходить прямокутний трикутник ABC (кут C=90°) при повороті навколо вершини A на 90° за годинниковою стрілкою; г) фігуру, в яку переходить фігураABCD при паралельному перенесенні, заданому формулами x'=x+2, y'=y+2 *геометрія
бласть значений функции - это множество всех действительных значений y, которые принимает функция.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
7) Периодическость функции.
Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.
Выбирай из того, что .
2) Теперь нам нужно вычислить чему равны углы при основании равнобедренного ΔАВС (∠ВАС и ∠ВСА). Мы знаем что они равны.
Мы знаем, что сумма углов в треугольнике равна 180°.
Найдём угол при основании равнобедренного треугольника:
Обозначим угол при основании буквой А для удобства. Значит
2а = 180° - 100°
2а = 80°
а = 40°
Угол при основании треугольника АВС равен 42°.
3) Зная ∠ВАС(40°) находим ∠ВАМ(40°:2=20°)
4) Зная величины двух углов ΔВАМ вычислим величину ∠АМВ:
180° - 100° - 20°= 60°
ответ: ∠АМВ = 60°