После выполнения команды присваивания x:=x+y значение переменной x равно 8, а значение переменной y равно 27. Чему были равны значения переменных x и y до выполнения указанной команды присваивания?
1. a) (x²-y²)-(x²+2xy+y²)= =(x-y)(x+y)-(x+y)²= =(x+y)(x-y-x-y)=(x+y)(-2y) b) (a²-b²)-(a²-2ab+b²)= =(a-b)(a+b)-(a-b)²= =(a-b)(a+b-a+b)=2b(a-b) 2. пусть х метров- первоначальная длина, ширина и высота дома в форме куба. Тогда (х+2) метров - получившаяся длина, (х-2) метров - получившаяся ширина, тк высоту не меняли, то она осталась х метров. Объём куба находится как х^3, а параллелепипеда как х(х+2)(х-2). Составим и решим уравнение. х^3-х(х+2)(х-2)=36 x^3-x(x²-4)=36 x^3-x^3+4x=36 4x=36 x=9(метров) ответ: 9метров значок ^ обозначает в степени
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3
=(x-y)(x+y)-(x+y)²=
=(x+y)(x-y-x-y)=(x+y)(-2y)
b) (a²-b²)-(a²-2ab+b²)=
=(a-b)(a+b)-(a-b)²=
=(a-b)(a+b-a+b)=2b(a-b)
2. пусть х метров- первоначальная длина, ширина и высота дома в форме куба. Тогда (х+2) метров - получившаяся длина, (х-2) метров - получившаяся ширина, тк высоту не меняли, то она осталась х метров. Объём куба находится как х^3, а параллелепипеда как
х(х+2)(х-2). Составим и решим уравнение.
х^3-х(х+2)(х-2)=36
x^3-x(x²-4)=36
x^3-x^3+4x=36
4x=36
x=9(метров)
ответ: 9метров
значок ^ обозначает в степени