Последовательность задается рекуррентной формулой a1 = 10, an + 1 = 7an: а) Напишите 2-й и 3-й члены цепочки;
б) Напишите формулу для n-го члена цепочки через n;
в) Айбек сказал, что номер 3430 будет членом этой цепочки. Верно ли заявление Айбека? Обосновать ответ.
Понятно, что нужно доказать для минимального числа попарных знакомств, ибо если все друг с другом знакомы, то число искомых пар будет очень велико. Минимум знакомств будет, если 24 человека знакомы только с 25-м. Тогда любая пара из 24 будет иметь общего знакомого - 25-го. Итого здесь получается 24 пары знакомых - 1-й и 25-й, 2-й и 25-й 24-й и 25-й. Возникает одна проблема - 25-й ни с кем не имеет общего знакомого. Тогда самое простое - попарно перезнакомить всех из 24-х. 1-го со 2-м, 3-го с 4-м 23-го с 24-м. Таких знакомств будет еще 12. И проблема 25-го решена. У него и любого из 24-х появился общий знакомый. Итого получилось минимум 36 пар знакомых.
а=1
а искомая функция имеет вид:
у = 2х - 1
Объяснение:
y=2ax-a^2
Это - функция типа
y=kx+b
где k = 2a; b = -a^2
График проходит через точку (-1;-3), т.е. известно, что
y(-1) = -3
Подставим значения:
-3 = 2a•(-1) - a²
-3 = -2a - a²
a² + 2a -3 = 0
По Т. Виетта раскладываем на множители
(a+3)(а-1)=0
а1 = -3
а2 = 1
Вычислим, которое значение а нам подходит: График пересекает ось 0x правее начала координат, т.е.
2ах-а²= 0
при х>0
Если а=1
Если а=-3, то
2•(-3)х-3²=0
-6х = 9
х=-1,5 < 0 - не подходит
Если а=1
то
2•1х-3²=0
2х = 9
х=4,5 > 0 - а=1 подходит
Т.е. а=1
а искомая функция имеет вид:
у = 2х - 1