Объяснение:
Периметр - сумма длин всех сторон:
Р=(-1-2b)+(-2b-)+(3a+6ab).
Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.
В нашем случае нужно раскрыть скобки и привести подобные слагаемые:
-1-2b+-2b-+3a+6ab - подобных слагаемых нет. Располагаем все эти слагаемые в порядке понижения степени:
2b-+6ab+3a-2b-1.
Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов; в нашем случае - наибольшая степень - это 2.
Как это теперь записать:
Р=(-1-2b)+(-2b-)+(3a+6ab)=-1-2b+-2b-+3a+6ab=2b-+6ab+3a-2b-1; степень многочлена - 2.
Объяснение:
Периметр - сумма длин всех сторон:
Р=(-1-2b)+(-2b-)+(3a+6ab).
Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.
В нашем случае нужно раскрыть скобки и привести подобные слагаемые:
-1-2b+-2b-+3a+6ab - подобных слагаемых нет. Располагаем все эти слагаемые в порядке понижения степени:
2b-+6ab+3a-2b-1.
Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов; в нашем случае - наибольшая степень - это 2.
Как это теперь записать:
Р=(-1-2b)+(-2b-)+(3a+6ab)=-1-2b+-2b-+3a+6ab=2b-+6ab+3a-2b-1; степень многочлена - 2.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так