В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
zaira1979zaira11
zaira1979zaira11
24.07.2022 06:33 •  Алгебра

Построить образ треугольника авс при параллельном переносе а) на вектор ас б) на вектор (-1; 3)

Показать ответ
Ответ:
arinabolshakov1
arinabolshakov1
04.03.2022 10:14

a) \frac{a^{3}-9a}{a^{2}+a-12}=0

Область допустимых значений

a^{2}+a-12\neq0 (т. к. на нуль делить нельзя)

рассмотрим числитель

a^{3}-9a=0

a(a^{2}-9)=0

a_{1}=0

a^{2}-9=0

a^{2}=9

a=\sqrt{9}a=\sqrt{9}a=\sqrt{9}

a_{2}=3

a_{3}=-3

рассмотрим знаменатель

a^{2}+a-12\neq0

Cчитаем дискриминант:

D=1^{2}-4\cdot1\cdot(-12)=1+48=49

Дискриминант положительный

\sqrt{D}=7

Уравнение имеет два различных корня:

a_{1}=\frac{-1+7}{2\cdot1}=\frac{6}{2}=3

a_{2}=\frac{-1-7}{2\cdot1}=\frac{-8}{2}=-4

следовательно a\neq3 и a\neq-4a\neq-4

ответ: при a=0; a=-3 данное выражение равно нулю.

 

б) \frac{a^{5}+2a^{4}}{a^{3}+a+10}=0

Область допустимых значений

a^{3}+a+10\neq0 (т. к. на нуль делить нельзя)

рассмотрим числитель

a^{5}+2a^{4}=0

a^{4}(a+2)=0

a_{1}=0

a+2=0

a_{2}=-2

рассмотрим знаменатель

a^{3}+a+10\neq0

корнем этого уравнения является, что a\neq-2

ответ: при a=0 данное выражение равно нулю.

 

в) \frac{a^{5}-4a^{4}+4a^{3}}{a^{4}-16}=0

Область допустимых значений

a^{4}-16\neq0 (т. к. на нуль делить нельзя)

рассмотрим числитель

a^{5}-4a^{4}+4a^{3}=0

a^{3}(a^{2}-4a+4)=0

a_{1}=0

a^{2}-4a+4=0

Заметим, что данное выражение можно свернуть в квадрат 

(a-2)^{2}=0

Cледовательно уравнение имеет один корень:

a_{2}=2

рассмотрим знаменатель

a^{4}-16\neq0

a^{4}\neq16

\sqrt[4]{a}=16

a_{1}\neq2

ответ: при a=0 данное выражение равно нулю.

0,0(0 оценок)
Ответ:
Софи1138
Софи1138
30.08.2022 00:48

дана функция f(x)=x^3+3x^2

 

уравнение касательной к графику функции в точке а:

y(a) = f(a)+f'(a)(x-a)

Это уравнение прямой с угловым коэффициентом f'(a) (т.е. это тангенс угла наклона прямой к оси абцисс)

Условие параллельности оси абцисс: угол равен 0, следовательно, и его тангенс 0, следовательно и f'(a)=0. а - искомые точки 

Берём производную: f' (x) = 3x^2+6x, приравниваем к нулю и решаем полученное уравнение относительно x:

3x^2+6x=0

x1=0

x2=2

Эти точки и есть искомые

Теперь напишем касательные:

в точке x1=0 касательная В ТОЧНОСТИ СОВПАДАЕТ С ОСЬЮ АБЦИСС

в точке x2=2 y= f(2)+0*(x-2) = 8- 3*4 = -4

это прямая y=-4 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота