y= x² 4x - 5
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
Найти вершину параболы (для построения):
х₀ = -b/2a = 4/2 = 2
y₀ = 2²-4*2 -5 = 4 - 8 -5 = -9
Координаты вершины (2; -9)
a)Ось симметрии = -b/2a X = 4/2 = 2
б)Найти точки пересечения параболы с осью Х, нули функции:
y= x² - 4x - 5
x² - 4x - 5 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16+20)/2
х₁,₂ = (4±√36)/2
х₁,₂ = (4±6)/2
х₁ = -1
х₂ = 5
Координаты нулей функции (-1; 0) (5; 0)
в)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = -0+0-5= -5
Также такой точкой является свободный член уравнения c = -5
Координата точки пересечения (0; -5)
г)для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= 7 ( -2; 7)
х= 0 у= -5 (0; -5)
х= 1 у= -8 (1; -8)
х= 3 у= -8 (3; -8)
х= 4 у= -5 (4; -5)
х= 6 у= 7 (6; 7)
Координаты вершины параболы (2; -9)
Координаты точек пересечения параболы с осью Х: (-1; 0) (5; 0)
Координаты дополнительных точек: (-2; 7) (0; -5) (1; -8) (3; -8) (4; -5) (6; 7)
Объяснение:
1.
а) (x - 3)(x -7) - 2x (3x - 5) = x² - 7x - 3x + 21 - 6x² + 10x = -5x² + 21 = 21 - 5x²
б) 4a (a - 2) - (a - 4)² = 4a² - 8a - (a² - 8a + 16) = 4a² - 8a - a² + 8a - 16 = 3a² - 16
в) 2 (m + 1)² - 4m = 2 (m² + 2m + 1) - 4m = 2m² + 4m + 2 - 4m = 2m² + 2 = 2 (m² + 1)
2.
a) x³ - 9x = x (x² - 9) = x (x - 3)(x + 3)
б) -5a² - 10ab - 5b² = -5 (a² + 2ab + b²) = -5 (a + b)²
3. (y² - 2y)² - y² (y + 3)(y - 3) + 2y (2y² + 5) = y⁴ - 4y³ + 4y² - y² (y² - 9) + 4y³ + 10y = y⁴ - 4y³ + 4y² - y⁴ + 9y² + 4y³ + 10y = 13y² + 10y = y (13y + 10)
4.
а) 16x⁴ - 81 = (4x² - 9)(4x² + 9) = (2x - 3)(2x + 3)(4x² + 9)
б) x² - x - y² - y = (x² - x) - (y² + y) = x (x - 1) - y (y + 1)
5. x² - 4x + 9 = x² - 4x + 4 - 4 + 9 = (x - 2)² + 5
уравнение при любом значении х, будет > 0, потому что выражение в скобках возведено в квадрат, а любое значение х в квадрате будет больше или равняться нулю
y= x² 4x - 5
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
Найти вершину параболы (для построения):
х₀ = -b/2a = 4/2 = 2
y₀ = 2²-4*2 -5 = 4 - 8 -5 = -9
Координаты вершины (2; -9)
a)Ось симметрии = -b/2a X = 4/2 = 2
б)Найти точки пересечения параболы с осью Х, нули функции:
y= x² - 4x - 5
x² - 4x - 5 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16+20)/2
х₁,₂ = (4±√36)/2
х₁,₂ = (4±6)/2
х₁ = -1
х₂ = 5
Координаты нулей функции (-1; 0) (5; 0)
в)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = -0+0-5= -5
Также такой точкой является свободный член уравнения c = -5
Координата точки пересечения (0; -5)
г)для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= 7 ( -2; 7)
х= 0 у= -5 (0; -5)
х= 1 у= -8 (1; -8)
х= 3 у= -8 (3; -8)
х= 4 у= -5 (4; -5)
х= 6 у= 7 (6; 7)
Координаты вершины параболы (2; -9)
Координаты точек пересечения параболы с осью Х: (-1; 0) (5; 0)
Координаты дополнительных точек: (-2; 7) (0; -5) (1; -8) (3; -8) (4; -5) (6; 7)
Объяснение:
1.
а) (x - 3)(x -7) - 2x (3x - 5) = x² - 7x - 3x + 21 - 6x² + 10x = -5x² + 21 = 21 - 5x²
б) 4a (a - 2) - (a - 4)² = 4a² - 8a - (a² - 8a + 16) = 4a² - 8a - a² + 8a - 16 = 3a² - 16
в) 2 (m + 1)² - 4m = 2 (m² + 2m + 1) - 4m = 2m² + 4m + 2 - 4m = 2m² + 2 = 2 (m² + 1)
2.
a) x³ - 9x = x (x² - 9) = x (x - 3)(x + 3)
б) -5a² - 10ab - 5b² = -5 (a² + 2ab + b²) = -5 (a + b)²
3. (y² - 2y)² - y² (y + 3)(y - 3) + 2y (2y² + 5) = y⁴ - 4y³ + 4y² - y² (y² - 9) + 4y³ + 10y = y⁴ - 4y³ + 4y² - y⁴ + 9y² + 4y³ + 10y = 13y² + 10y = y (13y + 10)
4.
а) 16x⁴ - 81 = (4x² - 9)(4x² + 9) = (2x - 3)(2x + 3)(4x² + 9)
б) x² - x - y² - y = (x² - x) - (y² + y) = x (x - 1) - y (y + 1)
5. x² - 4x + 9 = x² - 4x + 4 - 4 + 9 = (x - 2)² + 5
уравнение при любом значении х, будет > 0, потому что выражение в скобках возведено в квадрат, а любое значение х в квадрате будет больше или равняться нулю
Объяснение: