Потяг пройшов першу ділянку шляху за 2 год,а другу за 3 год.Усього за цей час він пройшов відстань 330 км.Знайдіть швидкість потяга на кожній ділянці, якщо на другій вона була на 10 км/ год більша,ніж на першій.
из того, что это ромб, мы понимаем, что стороны АВ = ВС
аналогично считаем ВС
и теперь
мы нашли координаты точки В(0;3)
теперь мы можем провести прямую через точки A(5;8) и В(0;3)
мы будем проводить и ещё прямые. я здесь распишу подробно как найти уравнение прямой, проходящей через две точки. дальше буду вывод уравнения опускать. писать только само уравнение
итак, прямая через точки А(5;8) и В(0;3)
мы получили каноническое уравнение прямой
из него легко получить уравнение прямой с угловым коэффициентом:
y = x + 3
теперь мы знаем, что поскольку это ромб, то АВ║CD
тогда уравнение прямой CD (через точки С и D) имеет тот же коэффициент угла наклона (коэффициент при х), что и прямая АВ, т.е. это уравнение вида
у=x+b
и эта прямая проходит через точку С(1; -4), значит координаты точки С должны удовлетворять уравнению прямой. подставим координаты точки С в уравнение
-4 = 1+b ⇒ b = -5
и тогда мы имеем уравнение прямой CD
у = х - 5
аналогично найдем уравнение прямой АD
сначала уравнение прямой ВС (по двум точкам)
у = -7х +3
а потом уравнение ║ ей прямой AD
y = -7x +b она проходит через точку А
8 = (-7)*5+ b b = 43
уравнение прямой AD
y = -7x + 43
теперь мы можем найти координаты точки D как пересечение прямых ВС и CD
В этом задании вам необходимо определить значение выражений при заданных значениях. Получается следующее решение.
(5p + q) : (р – 4q), если:
а) При p = –2,18; q = 10,9;
(5 * (-2,18)) + 10,9) : (-2,18 - 4 * 10,9) = (-10,9 + 10,9) : (-2,18 - 43,6) = 0 : 45,78 = 0.
В результате получается ответ равный 0.
б) При p = 2; q = 3;
(5 * 2 + 3) : (2 - 4 * 3) = (10 + 3) : (2 - 12) = 13 : (-10) = -1,3.
В результате получается ответ равный -1,3.
в) При р = 0,5; q = 1.
(5 * 0,5 + 1) : (0,5 - 4 * 1) = (2,5 + 1) : (0,5 - 4) = 3,5 : (-3,5) = -1.
Значение данного выражения равно -1.
Объяснение:
у нас по условию есть точки
А(5;8)
В(0; у) - лежит на оси оу
С(1; -4)
из того, что это ромб, мы понимаем, что стороны АВ = ВС
аналогично считаем ВС
и теперь
мы нашли координаты точки В(0;3)
теперь мы можем провести прямую через точки A(5;8) и В(0;3)
мы будем проводить и ещё прямые. я здесь распишу подробно как найти уравнение прямой, проходящей через две точки. дальше буду вывод уравнения опускать. писать только само уравнение
итак, прямая через точки А(5;8) и В(0;3)
мы получили каноническое уравнение прямой
из него легко получить уравнение прямой с угловым коэффициентом:
y = x + 3
теперь мы знаем, что поскольку это ромб, то АВ║CD
тогда уравнение прямой CD (через точки С и D) имеет тот же коэффициент угла наклона (коэффициент при х), что и прямая АВ, т.е. это уравнение вида
у=x+b
и эта прямая проходит через точку С(1; -4), значит координаты точки С должны удовлетворять уравнению прямой. подставим координаты точки С в уравнение
-4 = 1+b ⇒ b = -5
и тогда мы имеем уравнение прямой CD
у = х - 5
аналогично найдем уравнение прямой АD
сначала уравнение прямой ВС (по двум точкам)
у = -7х +3
а потом уравнение ║ ей прямой AD
y = -7x +b она проходит через точку А
8 = (-7)*5+ b b = 43
уравнение прямой AD
y = -7x + 43
теперь мы можем найти координаты точки D как пересечение прямых ВС и CD
x - 5 = -7x +43
8x = 48
x = 6; y = 1
мы нашли координаты точки D(6; 1)
итак, наши точки
А(5;8)
В(0; 3)
С(1;4)
D(6; 1)
теперь уравнение диагонали BD
уравнение прямой, проходящей через две точки
или
ответ
уравнение диагонали BD
точка В(0; 3)
точка D(6; 1)
на графике изображены все прямые и все точки