Рассмотрим сначала случай (k - 1) = 0 <=> k = 1. Тогда уравнение примет вид 2^x = 3/4 и имеет один корень. Пусть k не равно 1. Сделаем замену переменной: у = 2^х. Тогда уравнение перепишется в виде (k - 1) * y^2 - 4y + (k + 2) = 0. Найдем четверть дискриминанта: D/4 = 4 - (k - 1)(k + 2) = -k^2 - k + 6. Если уравнение имеет один или более корней, то дискриминант должен быть неотрицательным. Имеем неравенство -k^2 - k + 6 >= 0, отсюда -3 <= k <= 2. Находим корни: y1 = (2 + √(-k^2 - k + 6))/(k - 1); y2 = (2 - √(-k^2 - k + 6))/(k - 1). Необходимо, чтобы хотя бы один из корней был положительным, иначе уравнение у = 2^x не имеет корней. Имеем два неравенства: 1. 2 + √(-k^2 - k + 6))/(k - 1) > 0; 2. 2 - √(-k^2 - k + 6))/(k - 1) > 0. Решение первого очевидно: 1 < k <= 2. Со вторым придется повозиться и разбить его на две системы: 1. 0 < √(-k^2 - k + 6) < 2 и k - 1 > 0. 2. √(-k^2 - k + 6) > 2 и k - 1 < 0. Решение первой системы: -3 <= k < -2 и 1 < k <= 2. Решение второй системы: -2 < k < 1. Решение неравенства - объединение двух промежутков. Значит ответ: -3 <= k < -2 и -2 < k <= 2.
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Сделаем замену переменной: у = 2^х. Тогда уравнение перепишется в виде (k - 1) * y^2 - 4y + (k + 2) = 0. Найдем четверть дискриминанта:
D/4 = 4 - (k - 1)(k + 2) = -k^2 - k + 6.
Если уравнение имеет один или более корней, то дискриминант должен быть неотрицательным. Имеем неравенство -k^2 - k + 6 >= 0, отсюда -3 <= k <= 2.
Находим корни:
y1 = (2 + √(-k^2 - k + 6))/(k - 1);
y2 = (2 - √(-k^2 - k + 6))/(k - 1).
Необходимо, чтобы хотя бы один из корней был положительным, иначе уравнение у = 2^x не имеет корней. Имеем два неравенства:
1. 2 + √(-k^2 - k + 6))/(k - 1) > 0;
2. 2 - √(-k^2 - k + 6))/(k - 1) > 0.
Решение первого очевидно: 1 < k <= 2.
Со вторым придется повозиться и разбить его на две системы:
1. 0 < √(-k^2 - k + 6) < 2 и k - 1 > 0.
2. √(-k^2 - k + 6) > 2 и k - 1 < 0.
Решение первой системы: -3 <= k < -2 и 1 < k <= 2.
Решение второй системы: -2 < k < 1.
Решение неравенства - объединение двух промежутков. Значит ответ: -3 <= k < -2 и -2 < k <= 2.
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: