Представьте число 45 в виде суммы трех положительных слагаемых таким образом, чтобы их произведение было наибольшим, а два слагаемых были пропорциональны числам 2 и 3 а) Задайте формулой функцио, точку максимума которой необходимо будет найти.
б) найдите лагаемые и запишите данное число в виде сумме
х всегда переносится в левую часть, числа - в правую. При переносе из одной части в другую меняется на противоположный знак.
А) 5х - 4 < 2x + 5
Перенесем х - влево, числа - вправо. Тогда:
5x - 2x < 4 + 5
3x < 9 (разделим на три)
x < 3
ответ: ( - ∞; 3)
Б) х - 5 < 4 * (x-2)
Раскроем скобки во второй части:
х - 5 < 4x - 8
Перенесем х - влево, числа - вправо:
x + 4x < 5 - 8
5x < - 3 (разделим на 5)
x < - 0, 6
ответ: (-∞; - 0,6)
В) 4 * (3x + 1) > 6 * (3x-2)
Раскроем скобки в двух частях:
12х + 4 > 18x - 12
Перенесем х - влево, числа - вправо
12x - 18x > - 4 - 12
- 6x> - 16 (разделим на -6)
x < 16/6
ответ: (-∞; 16/6)
Здесь правило: при делении/умножении выражение на отрицательное число - знак неравенства меняется на противоположный.
Г) 5 * (х-4) > 7 * (x-1) - 2x
5x - 20 > 7x - 7 - 2x
5x - 20 > 5x - 7
5x - 5x > 20 - 7
0 - 13 > 0
нет корней
cos π/9=cos ((π/9-π/2)+π/2)=-sin(-7π/18)=sin 7π/18
sin (2π/18) и sin (7π/18)
sin 10° и sin 70°
На промежутке от [0; π/2] sinα возрастает поэтому чем больше, тем больше значение sinα.
10°<70°
sin 10<sin 70 или sin (π/9) < sin (7π/18)
sin п/ 9 < cos п/9
2. sin п/5 и cos 5п/14
cos 5π/14=cos((5π/14-π/2)+π/2)=-sin((5π/14-7π/14)=-sin(-2π/14) =sin (2π/14)=sin π/7
π/5 и π/7 ∈ [0; π/2]
На промежутке от [0; π/2] sinα возрастает поэтому чем больше, тем больше значение sinα.
π/5 и π/7
7π/35 >5π/35
sin π/5 > sin π/7 ⇒
sin п/5 > cos 5п/14
3.sin п /8 и cos 3п/10
cos 3π/10=cos ((3π/10-π/2)+π/2)=-sin (3π/10-π/2)=-sin(3π/10-5π/10)=
-sin (-2π/10)=sin π/5
π/5 и π/8 ∈[0; π/2]
На промежутке от [0; π/2] sinα возрастает поэтому чем больше, тем больше значение sinα.
π/5>π/8⇒
sin π/5>sin π/8 ⇒
sin п /8 < cos 3п/10