Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
1.
а) 2х + 8 в) 9а^2 - 4
б) 2у - 10х г) с^2 - 4b^2
2.
a) (x + 9)(x - 9)
b) (y - 4)^2 (y^2 - 4y + 4)
в) сори я не понял
г) 2((x + 1) - (x - 1))
3.
(с + 6)2 - с(с + 12)
2с + 12 - с^2 + 12c находим общие множетили
-с^2 + 12c +12 ║множим на -1
c^2 - 12 - 12
4.
а) (х+7)2 - (х - 4)(х + 4) = 65
2х + 14 - x^2 + 8 = 65
-x^2 + 2x + 22 = 65 ║*(-1)
x^2 - 2x -22 = -65
x^2 - 2x + 43 = 0
D = b^2 - 4ac
D = (2)^2 - 4*2*43 = 4 - 2752 = -2748 (Если дискримимнант отрицательный то уравнение не имеет ришения)
б) 49у^2 - 64 = 0
(7y - 8)(7y + 8) = 0 (Если значение множителей равно 0 значит один из множителей = 0)
5.
a) (4a^2 + b^2)(2a - b)(2a + b) Перемножаем
(4a^2 + b^2)(4a^2 - b^2) Перемножаем
16a^4 - b^4
б) (b^2c^3 – 2a^2)(b^2c^3 + 2a^2)
b^4c^6 - 4a^4
6. 4x^2 +9y^2>12xy – 0,1.
Не разбираюсь в неравенствах
Объяснение:
a^2 (3) означает поднесение до степеня
Остальное может кто-то подскажет
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.