Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
N-й степенью ненулевого числа называется произведение n множителей, каждый из которых равен заданному числу.
Число, которое умножают, называется основанием степени, число множителей является показателем степени.
Само число считают первым степенью числа и показатель степени не пишут.
Любой степень числа 1 равен единице ((.
Нулевой степень числа, отличного от нуля, равна единице: .
Степень с отрицательным показателем ненулевого числа равна числу, обратному степенью с противоположным показателем этого числа: .
Возведение в степень имеет следующие свойства:
1) Произведение степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным сумме показателей степени множителей: .
Чтобы умножить степени с одинаковой основой, нужно основу оставить без изменений, а показатели степени добавить.
2) Доля степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным разности показателей степени множителей: .
Чтобы разделить степени с одинаковой основой, нужно основу оставить без изменений, а от показателя степени делимого вычесть показатель степени делителя.
3) Степень степени равен степенью с той же основой и показателем степени, равным произведению показателей степени: .
Чтобы поднять степень в степень, нужно основу оставить без изменений, а показатели степени умножить.
4) Степень произведения множителей равен произведению степеней с тем же показателем каждого множителя: .
Чтобы поднять произведение множителей в степени, надо каждый множитель преподнести в эту степень и результаты перемножить.
5) Чтобы поднять дробь в степень, нужно поднести к этому степени и числитель, и знаменатель:.
Стандартным видом числа называется его запись в виде произведения некоторого числа, большего или равного единице, но меньшего от десяти, на степень числа десять
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
N-й степенью ненулевого числа называется произведение n множителей, каждый из которых равен заданному числу.
Число, которое умножают, называется основанием степени, число множителей является показателем степени.
Само число считают первым степенью числа и показатель степени не пишут.
Любой степень числа 1 равен единице ((.
Нулевой степень числа, отличного от нуля, равна единице: .
Степень с отрицательным показателем ненулевого числа равна числу, обратному степенью с противоположным показателем этого числа: .
Возведение в степень имеет следующие свойства:
1) Произведение степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным сумме показателей степени множителей: .
Чтобы умножить степени с одинаковой основой, нужно основу оставить без изменений, а показатели степени добавить.
2) Доля степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным разности показателей степени множителей: .
Чтобы разделить степени с одинаковой основой, нужно основу оставить без изменений, а от показателя степени делимого вычесть показатель степени делителя.
3) Степень степени равен степенью с той же основой и показателем степени, равным произведению показателей степени: .
Чтобы поднять степень в степень, нужно основу оставить без изменений, а показатели степени умножить.
4) Степень произведения множителей равен произведению степеней с тем же показателем каждого множителя: .
Чтобы поднять произведение множителей в степени, надо каждый множитель преподнести в эту степень и результаты перемножить.
5) Чтобы поднять дробь в степень, нужно поднести к этому степени и числитель, и знаменатель:.
Стандартным видом числа называется его запись в виде произведения некоторого числа, большего или равного единице, но меньшего от десяти, на степень числа десять