Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4
11,1 (км/час) - собственная скорость катера;
2,1 (км/час) -скорость течения реки.
Объяснение:
Катер за 2 ч против течения реки проехал 18 км, а по течению за 1ч 40 мин на 4 км больше. Найдите скорость течения реки и собственную скорость катера.
х - собственная скорость катера
у - скорость течения реки
х+у - скорость катера по течению
х-у - скорость катера против течения
1 час 40 минут=1 и 2/3 часа=5/3 часа.
Согласно условию задачи составляем систему уравнений:
Формула движения: S=v*t
S - расстояние v - скорость t - время
(х-у)*2=18
(х+у)*5/3=22
Второе уравнение умножить на 3, чтобы избавиться от дроби:
(х-у)*2=18
(х+у)*5=66
Раскрыть скобки:
2х-2у=18
5х+5у=66
Разделить первое уравнение на 2 для упрощения:
х-у=9
5х+5у=66
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=9+у
5(9+у)+5у=66
45+5у+5у=66
10у=66-45
10у=21
у=2,1 (км/час) -скорость течения реки
х=9+у
х=9+2,1
х=11,1 (км/час) - собственная скорость катера
Проверка:
(11,1-2,1)*2=9*2=18
(11,1+2,1)*5/3=(13,2*5)/3=22, верно.