ответ:Раскроем скобки:
Тогда наша задача сводится к тому, чтобы доказать, что (n-1)(n+1) при любом нечетном n кратно 8.
Любое нечётное число можно представить в виде: n = 2k+1, k∈Z (Z - множество целых чисел)
Теперь задача сводится к тому, чтобы доказать, что k(k+1) при любом целом k кратно 2.
Пусть k = 0, тогда произведение равно 0 и отсюда следует, что произведение кратно 2;
Пусть k - нечётное число, тогда k+1 - чётное. Произведение не чётного числа на чётное будет чётным и, следовательно, кратным 2.
Аналогично если k - чётное число.
На основании вышеизложенного приходим к выводу, что (4n+1)² – (n+4)² при любом нечётном n кратно 120.
Объяснение:
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
ответ:Раскроем скобки:
Тогда наша задача сводится к тому, чтобы доказать, что (n-1)(n+1) при любом нечетном n кратно 8.
Любое нечётное число можно представить в виде: n = 2k+1, k∈Z (Z - множество целых чисел)
Теперь задача сводится к тому, чтобы доказать, что k(k+1) при любом целом k кратно 2.
Пусть k = 0, тогда произведение равно 0 и отсюда следует, что произведение кратно 2;
Пусть k - нечётное число, тогда k+1 - чётное. Произведение не чётного числа на чётное будет чётным и, следовательно, кратным 2.
Аналогично если k - чётное число.
На основании вышеизложенного приходим к выводу, что (4n+1)² – (n+4)² при любом нечётном n кратно 120.
Объяснение: