Описанной около многоугольника окружностью называется окружность, проходящая через его вершины. Вписанной в многоугольник окружностью называется окружность, касающаяся его сторон. Если многоугольник правильный, центры описанной и вписанной окружностей совпадают. Соединив вершины многоугольника с центром окружностей, получим равнобедренные треугольники. Один из них в каждом правильном многоугольнике -АОВ. Сторона АВ многоугольника- основание такого треугольника, радиусы АО и ОВ описанной окружности - стороны треугольника, а радиус вписанной окружности - высота ОН. Решение сводится к нахождению стороны равнобедренного треугольника, в котором основание равно 24 см, а высота - 4√3 Высота делит равнобедренный треугольник на два равных прямоугольных, в которых сторона - гипотенуза, высота и половина основания - катеты. Пусть гипотенуза ( сторона треугольника ОВ=ОА) будет х. Тогда по т.Пифагора х²=12²+(4√3)²=144+48=192 х=8√3 R=8√3
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.Вписанной в многоугольник окружностью называется окружность, касающаяся его сторон.
Если многоугольник правильный, центры описанной и вписанной окружностей совпадают.
Соединив вершины многоугольника с центром окружностей,
получим равнобедренные треугольники.
Один из них в каждом правильном многоугольнике -АОВ.
Сторона АВ многоугольника- основание такого треугольника,
радиусы АО и ОВ описанной окружности - стороны треугольника,
а радиус вписанной окружности - высота ОН.
Решение
сводится к нахождению стороны равнобедренного треугольника, в котором основание равно 24 см, а высота - 4√3
Высота делит равнобедренный треугольник на два равных прямоугольных, в которых сторона - гипотенуза, высота и половина основания - катеты.
Пусть гипотенуза ( сторона треугольника ОВ=ОА) будет х.
Тогда по т.Пифагора
х²=12²+(4√3)²=144+48=192
х=8√3
R=8√3