Пусть м - множество многочленов с вещественными коэффициентами p(t)€pn удовлетворяющих указанным условиям. n = 3, p€(0) + p(1) = 0 доказать, что м - подпространство в pn; найти базис и размерность м. дополнить базис м до базиса pn.
2) x=0, y=-4 (это точки пересечение графика с осью ОУ) y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти) f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная) y'=0 2*x=0 x=0- точка экстремума. f '(x)>0 при xЭ (0; плюс бесконечности) f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности) Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума f(Xmin)=-4 7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4) тоесть, у тя сначало функция убывает до этой точки, затем возрастает. А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.
х=1 у= -2
Пошаговое объяснение:
Из второго уравнения получаем: (3х+у)= -2/ху
Подставляем в первое:
-2/ху (9х²+у²)=13
-18х/у -2у/х=13
-18х-2у²/х=13у
-18х²-2у²=13ху
18х²+13ху+2у²=0
Чтобы было проще, умножим обе части на 2!
(Приводим к формуле сокращенного умножения (х+у)²)
36х²+26ху+4у²=0
6²х²+2*6*2ху+2²у²= -2ху
(6х+2у)²= -2ху
2(3х+у)²= -ху
ху=-2(3х+у)²
Подставляем это во второе уранение:
-2(3х+у)² * (3х+у)=-2
(3х+у)³=1
3х+у=1
у=1-3х
Меняем у на вычисленное во втором уравнении:
х(1-3х) (3х+1-3х)=-2
х-3х=-2
-2х=-2
х=1
Вычисляем у подставив х=1 в выражение у=1-3х:
у=1-3
у= -2
Объяснение:
2) x=0, y=-4 (это точки пересечение графика с осью ОУ)
y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти)
f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная)
y'=0
2*x=0
x=0- точка экстремума.
f '(x)>0 при xЭ (0; плюс бесконечности)
f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности)
Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума
f(Xmin)=-4
7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4)
тоесть, у тя сначало функция убывает до этой точки, затем возрастает.
А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.