Рівнобедрений трикутник, бічна сторона якого дорівнює 6, а кут при основі дорівнює В, обертається навколо прямої, що містить його основу. Знайдіть площу поверхні тіла обертання.
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
Функция f(x) называется возрастающей, если для для любых двух чисел таких, что x₁ < x₂, выполняется условие f(x₁) < f(x₂).
Т.е. для возрастающей функции при x₁ < x₂ разность f(x₁) - f(x₂) < 0.
Выберем два последовательных числа, n и (n + 1). У нас выполняется условие n < n + 1.
Оценим разность значений функции при этих значениях аргумента:
f(n) = 3n - 5
f(n+1) = 3(n + 1) - 5 = 3n + 3 - 5 = 3n - 2
f(n) - f(n+1) = 3n - 5 - (3n - 2) = 3n - 5 - 3n +2 = -3
f(n) - f(n+1) = - 3 < 0
⇒ f(n) < f(n+1) функция возрастающая. Доказано.
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)