Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки. Решаем две системы
решение системы предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0; 5x-9>1; х²-4х+5≤1; х²-4х+5>0. Решение каждого неравенства системы: х≤20/11 х>1,8 х=2 х- любое О т в е т. 1а) система не имеет решений. б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0 0<5x-9<1 х²-4х+5≥1 х²-4х+5>0 Решение х≤20/11 0<х<1,8 х-любое (так как х²-4х+4≥0 при любом х) х- любое Решение системы 1б) 0<x<1,8, так как (20/11) >1,8 О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 5x-9>1 х²-4х+5≥1 х²-4х+5>0 Решение х≥20/11 х>1,8 х-любое х- любое О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 0<5x-9<1 х²-4х+5≤1 х²-4х+5>0 Решение х≥20/11 0<х<1,8 х=2 х- любое Решение системы 2б) нет решений О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11 или х∈(0;1,8)U(1целая 9/11;+∞)
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Решаем две системы
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)