Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
1) Квадратичная функция имеет вид ах² + bx + c, поэтому подходит ответ под буквой а) y = 3x - x² 2) Нулями функции называются такие значения х, при которых значение функции (т. е. y) равно нулю а) у = х² - 6х + 8 = 0 Решим квадратное уравнение через дискриминант. x = 2 x = 4 Это и есть нули функции б) y = 2x² + 6x Вынесем общий множитель 2х 2х(х + 6) = 0 Произведение равно нулю, когда хотя бы один из множителей равен нулю. 2х = 0 х + 6 = 0 х = 0 х = -6 в) у = -2х² + 3х + 5 = 0 Домножим на -1, чтобы избавиться от минуса перед иксом 2х² - 3х - 5 = 0 Решаем через дискриминант: x = 1 x =
Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
Теорема доказана.
2) Нулями функции называются такие значения х, при которых значение функции (т. е. y) равно нулю
а) у = х² - 6х + 8 = 0
Решим квадратное уравнение через дискриминант.
x = 2
x = 4
Это и есть нули функции
б) y = 2x² + 6x
Вынесем общий множитель 2х
2х(х + 6) = 0
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
2х = 0
х + 6 = 0
х = 0
х = -6
в) у = -2х² + 3х + 5 = 0
Домножим на -1, чтобы избавиться от минуса перед иксом
2х² - 3х - 5 = 0
Решаем через дискриминант:
x = 1
x =