Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
ответ: Воспользуемся формулой n-го члена геометрической прогрессии bn = b1 * qn - 1, где b1 - первый член геометрической прогрессии, q - знаменатель геометрической прогрессии.
Согласно условию задачи, в данной геометрической прогрессии b5 = -14 и b8 = 112.
Используя формулу n-го члена геометрической прогрессии при n = 5 и n = 8, получаем:
-14 = b1 * q5 - 1;
112 = b1 * q8 - 1.
Разделив второе соотношение на первое, получаем:
b1 * q8 - 1 / (b1 * q5 - 1) = 112 / (-14);
q7 / q4 = -8;
q³ = (-2)³;
q = -2.
ответ: знаменатель данной геометрической прогрессии равен -2
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.