1. Дана арифметическая прогрессия (an). Известно, что a1=2,5 и d=1,6.
Вычисли сумму первых шести членов арифметической прогрессии.
Запиши ответ в виде числа, при необходимости округлив его до десятых:
2.Вычисли 9-й член арифметической прогрессии, если известно, что a1 = 1,9 и d = 4,9.
a9 =
3.Вычисли сумму первых 6 членов арифметической прогрессии (an), если даны первые члены: −1;6...
S6 =
4.Дана арифметическая прогрессия: −2;−4...
Вычисли разность прогрессии и третий член прогрессии.
d=
b3=
5.Найди следующие два члена арифметической прогрессии и сумму первых четырёх членов, если a1=8 и a2=0,5.
a3=
a4=
S4
Объяснение:
здається так
1. Дана арифметическая прогрессия (an). Известно, что a1=2,5 и d=1,6.
Вычисли сумму первых шести членов арифметической прогрессии.
Запиши ответ в виде числа, при необходимости округлив его до десятых:
2.Вычисли 9-й член арифметической прогрессии, если известно, что a1 = 1,9 и d = 4,9.
a9 =
3.Вычисли сумму первых 6 членов арифметической прогрессии (an), если даны первые члены: −1;6...
S6 =
4.Дана арифметическая прогрессия: −2;−4...
Вычисли разность прогрессии и третий член прогрессии.
d=
b3=
5.Найди следующие два члена арифметической прогрессии и сумму первых четырёх членов, если a1=8 и a2=0,5.
a3=
a4=
S4
Объяснение:
здається так
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z