Таня и Вера играют в игру. У Тани есть карточки с числами от 1 до 30. Она расставляет их в некотором порядке по кругу. Для каждых двух соседних чисел Вера считает их разность, вычитая из большего числа меньшее, и выписывает получившиеся 30 чисел себе в блокнот. После этого Вера отдает Тане количество конфет, равное наименьшему числу из выписанных в блокнот. Таня выкладывает карточки так, чтобы получить как можно больше конфет. Какое наибольшее количество конфет она может получить?
Обращаю ваше внимание на карточку с числом 15. Разница между ним и всеми оставшимися числами не более 14 (30 пока что во внимание не берем).
Значит, любая разность с участием числа 15 будет не более 14 (опять же на 30 внимание пока что не обращаем).
Таким образом наиболее выгодный вариант расстановки для Тани - 14 конфет, ибо нет возможности составить ряд с разностью в 15.
Таня и Вера играют в игру. У Тани есть карточки с числами от 1 до 30. Она расставляет их в некотором порядке по кругу. Для каждых двух соседних чисел Вера считает их разность, вычитая из большего числа меньшее, и выписывает получившиеся 30 чисел себе в блокнот. После этого Вера отдает Тане количество конфет, равное наименьшему числу из выписанных в блокнот. Таня выкладывает карточки так, чтобы получить как можно больше конфет. Какое наибольшее количество конфет она может получить?
Обращаю ваше внимание на карточку с числом 15. Разница между ним и всеми оставшимися числами не более 14 (30 пока что во внимание не берем).
Значит, любая разность с участием числа 15 будет не более 14 (опять же на 30 внимание пока что не обращаем).
Таким образом наиболее выгодный вариант расстановки для Тани - 14 конфет, ибо нет возможности составить ряд с разностью в 15.
Её ряд: 1, 16, 2, 17, 3, 18, …, 14, 29, 15, 30.
ответ: 14.
Задать вопрос
Войти
АнонимГеометрия13 мая 17:10
треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы
ответ или решение1
Боброва Кира
Рассмотрим два возможный случая.
1 случай.
Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.
Тогда два других угла при основании будут равны между собой.
Обозначим через x величину этих углов.
Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:
х + х + 112 = 180,
решая которое, получаем:
2х + 112 = 180;
(2х + 112) / 2 = 180 / 2;
х + 56 = 90;
х = 90 - 56 = 34°.
2 случай.
Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.
Тогда другой угол при основании также должен составлять 112°.
Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.
ответ: 112°, 54°, 54°.