В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Алина052408
Алина052408
18.04.2021 09:34 •  Алгебра

Решить тригонометрическое уравнение: 6sin^2x - cos x -4 = 0

Показать ответ
Ответ:
TABLBC
TABLBC
06.10.2020 14:04
Вот, держи.просто надо было выразить синус через косинус, а потом как квадратное уравнение решается
Решить тригонометрическое уравнение: 6sin^2x - cos x -4 = 0
0,0(0 оценок)
Ответ:
Pollyru
Pollyru
06.10.2020 14:04
6sin^2x-cosx-4=0
6*(1-cos^2x)-cosx-4=0
6-6cos^2x-cosx-4=0
-6cos^2x-cosx+2=0
cosx=t
-6t^2-t+2=0
D=b^2-4ac=(-1)^2-4*(-6)*2=1+48=49
t1=(1-7)/2*(-6)=-6/-12=1/2
t2=(1+7)/2*(-6)=8/-12=-2/3
cosx=1/2, x=+-arccosπ/3+2πn, n€Z
cosx=+-arccos(-2/3)+2πn,n€Z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота