Решение: Обозначим за х-количество изюма; за у- количество груш; за z- количество чернослива Тогда согласно условию задачи: Составим уравнения: у=х+100 z/3=у х+у+z=1000 Решим данную систему уравнений: приводим к тому, чтобы в третьем уравнении была одна переменная: х-известна; у=х+100 z=3у подтавим в третье уравнение, получим; х+х+100+3у=1000 Подставим вместо у, известное нам: у=х+100 Тогда: х+х+100+3*(х+100)=1000 х+х+100+3х+300=1000 5х=600 х=120г (количество изюма) у=120+100=220г (количество груш) z=3*220=660г (количество чернослива)
71.
1) 0.7√100-1/3√36= 0.7*10-1/3*6=7-6/3=7-2=5
2)√16*√0.25+√5³-4=4*0.5+√125-4=2+√121=2+11=13
3)3√0.81-√9²+12²=3*0.9-√81+144=2.7-√225=2.7-15=-12.3
4)√7 1/9+√3 1/16 - 0.04√90000= √64/9+√49/16-0.04*300=8/3+7/4-12=2 2/3+1 3/4-12
72.
1)(√11)²-√1.44=11-1.2=9.8
2)(2√13)²-(5√8)²=2*13-5*8=26-40=-14
3)14(-1/7√15)²-1/8(2√6)²=14(-1/7*15)-1/8(2*6)=14*(-15/7)-1/8*12=-210/7-12/8=-30-1.5=-31.5
4)√529-(1/2√84)²=23-(1/2*84)=23-84/2=23-42=-19
Объяснение:
71.
1)1*6/3(дробь)=6/3(сокращаем дробь)=2/1(1 не пишем)
/ - обозначение дроби.
Жирные числа - обозначение целых (7(7 целых),3(целых))
Обозначим за х-количество изюма;
за у- количество груш;
за z- количество чернослива
Тогда согласно условию задачи:
Составим уравнения:
у=х+100
z/3=у
х+у+z=1000
Решим данную систему уравнений:
приводим к тому, чтобы в третьем уравнении была одна переменная:
х-известна;
у=х+100
z=3у
подтавим в третье уравнение, получим;
х+х+100+3у=1000
Подставим вместо у, известное нам: у=х+100
Тогда:
х+х+100+3*(х+100)=1000
х+х+100+3х+300=1000
5х=600
х=120г (количество изюма)
у=120+100=220г (количество груш)
z=3*220=660г (количество чернослива)
Проверка: 120+220+660=1000(г)