1) Ставим 1 том первым. Вторым может быть любой, кроме 4. Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта. Всего 24*4 = 96 вариантов. 2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта. Остальные 3 тома как угодно. Это 6 вариантов. Всего 4*3*6 = 72 варианта. 3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов. Второй - любой, кроме 4. Это 3 варианта. Четвертый - тоже любой, кроме 4. Это 2 варианта. Пятый и шестой - какие угодно. Это 2 варианта. Всего 5*3*2*2 = 60 вариантов. 4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов. 5) Ставим 1 том пятым. Это аналогично 2). 72 варианта. 6) Ставим 1 том последним. Это аналогично 1). 96 вариантов. Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2})
Вероятность равна:
г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4})
Вероятность равна:
д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5})
Вероятность равна:
Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.