Если ветви параболы направлены вверх (а это во 2 и 3 примерах, т.к. a=1>0 ), то наименьшее значение квадратичная функция будет принимать в вершине: y=x²-x-10 ⇒ x(верш)=-b/2a=1/2 , y(верш)=(1/2)²-(1/2)-10= -10,25 у(наим)=-10,25 у=x²-7х+32,5 ⇒ х(верш)=7/2=3,5 , у(верш)=(3,5)²-7·3,5+32,5=20,25 у(наим)=20,25
У квадратичной функции в 1 примере у= -х²-2х+1 старший коэффициент а= -1<0 , поэтому ветви параболы направлены вниз , и наименьшего значения определить невозможно. Но можно определить наибольшее значение, которое будет достигаться в вершине: х(верш)=2/(-2)=-1 ⇒ у(верш)=(-1)²-2·(-1)+1=4 у(наибол)=4
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.т.к. a=1>0 ), то наименьшее значение квадратичная функция будет принимать в вершине:
y=x²-x-10 ⇒ x(верш)=-b/2a=1/2 , y(верш)=(1/2)²-(1/2)-10= -10,25
у(наим)=-10,25
у=x²-7х+32,5 ⇒ х(верш)=7/2=3,5 , у(верш)=(3,5)²-7·3,5+32,5=20,25
у(наим)=20,25
У квадратичной функции в 1 примере у= -х²-2х+1 старший коэффициент
а= -1<0 , поэтому ветви параболы направлены вниз , и наименьшего значения определить невозможно. Но можно определить наибольшее значение, которое будет достигаться в вершине:
х(верш)=2/(-2)=-1 ⇒ у(верш)=(-1)²-2·(-1)+1=4
у(наибол)=4