Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай
Здравствуй!
а) 3(х + 1) + 7(х - 3) = 8(х + 2) б) 4(x - 1) + 6(x + 2) = 8(x - 3)
3х + 3 + 7х - 21 = 8х + 16 4х - 4 + 6х + 12 = 8х - 24
10х - 18 = 8х + 16 10х + 8 = 8х - 24
10х - 8х = 16 + 18 10х - 8х = -24 - 8
2х = 34 2х = -32
х = 34 : 2 х = -32 : 2
х = 17 х = -16
в) 3(x + 1) + 7(x - 3) = 10(x + 2) - 38
г) 4(x-1) + 6(x+2)=10(x-3) + 38
3х + 3 + 7х - 21 = 10х + 20 - 38
4х-4+6х+12=10х-30+38
10х - 18 = 10х - 18 10х-8=10х+8
10х - 10х = -18 + 18 10х-10х=8+8
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай
Здравствуй!
а) 3(х + 1) + 7(х - 3) = 8(х + 2) б) 4(x - 1) + 6(x + 2) = 8(x - 3)
3х + 3 + 7х - 21 = 8х + 16 4х - 4 + 6х + 12 = 8х - 24
10х - 18 = 8х + 16 10х + 8 = 8х - 24
10х - 8х = 16 + 18 10х - 8х = -24 - 8
2х = 34 2х = -32
х = 34 : 2 х = -32 : 2
х = 17 х = -16
ответ: 17. ответ: -16.в) 3(x + 1) + 7(x - 3) = 10(x + 2) - 38
г) 4(x-1) + 6(x+2)=10(x-3) + 38
3х + 3 + 7х - 21 = 10х + 20 - 38
4х-4+6х+12=10х-30+38
10х - 18 = 10х - 18 10х-8=10х+8
10х - 10х = -18 + 18 10х-10х=8+8
ответ: Уравнение не имеет корней ответ: Уравнение не имеет корней