2) Найдите угловой коэффициент касательной к графику функций: а) в точке с абсциссой x0=п\3
Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке
3. Вычислите f'(п\6), если f(x)=2cosx+x^2-пx\3 +5
4. Производная от пути является скорость, т.е. s'(t) = v(t)
5. Найдите все значения x, при которых выполняется неравенство f'<0, если f(x)=81x-3x^2 Производная функции:
6. составьте уравнение касательных к графику функции y=x^4+x^2-2 в точках его пересечения его с осью абсцисс. Найдите точку пересечения этих касательных
Найдем точки пересечения исходной функции с осью Ох:
Решая это уравнение как квадратное уравнение относительно x^2, получим корни
x² = -2 - не удовлетворяет
x² = 1 откуда x0 = ±1
Найдем теперь эти уравнения касательных
Приравнивая касательные, найдем точки пересечения касательных
(1;-6) - пересечение касательных. (см. рисунок).
7. Найдите все значения х, при которых выполняется неравенство f'=0, если f(x)=cos2x+x√3 и x э [0;4п]
Отбор корней из x ∈ [0;4π]
8. Докажите, что функция y=(2x+5)^10 удовлетворяет соотношению 8000x^10(2x+5)^15-(y')^3=0
2) Найдите угловой коэффициент касательной к графику функций:
а) в точке с абсциссой x0=п\3
Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке
3. Вычислите f'(п\6), если f(x)=2cosx+x^2-пx\3 +5
4. Производная от пути является скорость, т.е. s'(t) = v(t)
5. Найдите все значения x, при которых выполняется неравенство f'<0, если f(x)=81x-3x^2
Производная функции:
6. составьте уравнение касательных к графику функции y=x^4+x^2-2 в точках его пересечения его с осью абсцисс. Найдите точку пересечения этих касательных
Найдем точки пересечения исходной функции с осью Ох:
Решая это уравнение как квадратное уравнение относительно x^2, получим корни
x² = -2 - не удовлетворяет
x² = 1 откуда x0 = ±1
Найдем теперь эти уравнения касательных
Приравнивая касательные, найдем точки пересечения касательных
(1;-6) - пересечение касательных. (см. рисунок).
7. Найдите все значения х, при которых выполняется неравенство f'=0, если f(x)=cos2x+x√3 и x э [0;4п]
Отбор корней из x ∈ [0;4π]
8. Докажите, что функция y=(2x+5)^10 удовлетворяет соотношению 8000x^10(2x+5)^15-(y')^3=0
Не удовлетворяет.
угловой коэффициент касательной к графику функции в точке х_0 находится, как значение производной ф-ции в этой точке.
Найдем производную ф-ции y=-7cos 3x+2sin 5x-3
(Только не пойму
y=-7cos(3x)+2sin(5x-3) или
y=-7cos(3x)+2sin(5x)-3 ?)
Для первого варианта:
y'=-7(-sin(3x))*3+2cos(5x-3)*5=21sin(3x)+10cos(5x-3)
y'(pi/3)=21sin(3pi/3)+10cos(5pi/3-3)=21sin(pi)+10cos((5pi-9)/3)=10cos((5pi-9)/3) прибл. равно -6.1720976026
cos((5pi-9)/3) - трансцендентное число, поэтому думаю, что 2-й вариант все же правильный.
Для второго варианта:
y'=-7(-sin(3x))*3+2cos(5x)*5=21sin(3x)+10cos(5x)
y'(pi/3)=21sin(3pi/3)+10cos(5pi/3)=21sin(pi)+10cos(pi+2pi/3)=0+10cos(2pi-pi/3)=10cos(-pi/3)=10cos(pi/3)=10*1/2=5