Элементарно cos(a + b) = cosa * cosb - sina * sinb sina и cosb у нас уже есть. Осталось вычислить sin b и cos a Согласно основному тригонометрическому тождеству sin^2a + cos^2a = 1. Зная это, мы можем написать, что sin^2b =sqrt (1 - cos^2b) cos^2a = sqrt (1 - sin^2a) ^ - обозначение степени, sqrt - квадратный корень. Надо правильно поставить знак после извлечения корня. А для этого нам даны неравенства! а находится в 3й четверти, стало быть, cosa может быть только отрицательным, а b находит в 4й четверти, соответственно sinb тоже отрицательный. Осталось просто все вычислить и получить результат ;).
b2 - второй член
b3 - третий член
q - знаменатель геометрической прогрессии
b1+b2=15
b2+b3= -30
q=b2/b1 = b3/b2. Из этого следует, что b2=b1*q, b3= b2*q= b1*q^2
Решим систему уравнений:
1) b1 + b1*q = 15
2) b1*q + b1*q^2= -30, что равносильно b1*q( 1+q)= -30
Выразим b1: b1= 15/(1+q) и подставим во второе уравнение
15 q/(1+q) *( 1+q)= -30
15q= -30
q = -2
b1 - 2b1 = 15
-b1 = 15
b1 = -15; b2= -15*(-2)=30; b3 = 30* (-2) = -60
Надеюсь, решение понятно.
P.S Ещё не научился вводить знаки степени и дроби. Удачи!