Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.
Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение
xn + yn = zn
не имеет ненулевых рациональных решений для всех натуральных n > 2.
Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.
В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.
При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:
перебора вариантов;
применение алгоритма Евклида;
представление чисел в виде непрерывных (цепных) дробей;
разложения на множители;
решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;
Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:
1) x – 2y = 7, x + y = 1;
2) x – 2y = 1, x + y = 7;
3) x – 2y = –7, x + y = –1;
4) x – 2y = –1, x + y = –7.
Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).
ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).
2. Решить в целых числах уравнение:
а) 20х + 12у = 2013;
б) 5х + 7у = 19;
в) 201х – 1999у = 12.
Решение
а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.
ответ: решений нет.
б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,
Будем считать, что дана арифметическая прогрессий, сумма трёх первых членов которой равна 15.
Её свойство: an+1= an + d, где d — это разность арифметической прогрессии.
Запишем сумму по условию для трёх членов.
Пусть первый х.
х + (х + d) + (х + 2d) = 15,
3х + 3d = 15 или, сократив на 3: х + d = 5.
То есть второй член найден и равен 5.
Получили члены арифметической прогрессии:
х, 5, (15 - х - 5) = х, 5, (10 - х).
Теперь используем условие для геометрической прогрессии:
(х + 1), (5 + 4), (10 - х + 19).
(х + 1), 9, (29 - х). Получили 3 члена геометрической прогрессии.
По свойству геометрической прогрессии:
(х + 1) / 9 = 9 / (29 - х).
Решаем эту пропорцию как квадратное уравнение и определяем его 2 корня: х1 = 2 и х2 = 26.
Последнее число не подходит.
Принимаем х = 2 и получаем ответ:
заданные числа равны 2, 5 и 8.
Немного теории
Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.
Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение
xn + yn = zn
не имеет ненулевых рациональных решений для всех натуральных n > 2.
Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.
В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.
При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:
перебора вариантов;
применение алгоритма Евклида;
представление чисел в виде непрерывных (цепных) дробей;
разложения на множители;
решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;
метод остатков;
метод бесконечного спуска.
Задачи с решениями
1. Решить в целых числах уравнение x2 – xy – 2y2 = 7.
Решение
Запишем уравнение в виде (x – 2y)(x + y) = 7.
Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:
1) x – 2y = 7, x + y = 1;
2) x – 2y = 1, x + y = 7;
3) x – 2y = –7, x + y = –1;
4) x – 2y = –1, x + y = –7.
Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).
ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).
2. Решить в целых числах уравнение:
а) 20х + 12у = 2013;
б) 5х + 7у = 19;
в) 201х – 1999у = 12.
Решение
а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.
ответ: решений нет.
б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,
x0 = 1, y0 = 2.
Тогда
5x0 + 7y0 = 19,
откуда
5(х – x0) + 7(у – y0) = 0,
5(х – x0) = –7(у – y0).
Поскольку числа 5 и 7 взаимно простые, то
х – x0 = 7k, у – y0 = –5k.
Значит, общее решение:
х = 1 + 7k, у = 2 – 5k,
где k – произвольное целое число.
ответ: (1+7k; 2–5k), где k – целое число.
Объяснение:
поставь лайк за старания