Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
1) х³ + х² - 6 * х = 0
х * (х² + х - 6) = 0
х₁ = 0 х₂ = 2 х₃ = -3
2) (x² - 2x + 3)(x² - 2x + 4) = 6
пусть х² - 2*х + 3 = т. уравнение принимает вид
т * (т + 1) = 6
т² + т - 6 = 0
т₁ = -3 т₂ = 2
1) х² - 2 * х + 3 = 2
х² - 2 * х + 1 = (х - 1)² = 0
х = 1
2) х² - 2 * х + 3 = -3
х²- 2 * х + 6 = 0
корней нет (дискриминант отрицательный)
3) 6*x² + 11*x - 2 = 0 6*x - 1
уравнение 6*x² + 11*x - 2 = 0 имеет 2 корня: х₁ = -2 х₂ = 1/6
второй корень не подходит, так как в этом случае знаменатель равен нулю
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
=–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°