РЕШИТЬ
Відомо, що точки A і B розташовані на одиничному півколі.
Якщо відоме значення однієї з координат цих точок, які можливі значення іншої координати?
1. A(...;6)
6
−6
0
−1
така точка не може розташовуватися на одиничному півколі
1
2. B(−3/√2;...)
2/√2
1
1/2
3/√2
−3/√2
−2/√2
−1
−1/2
0
така точка не може розташовуватися на одиничному півколі
y = x4 – 8x2 + 5
1.Найдем точки экстремума функции, т.е. точки, в которых y’ = 0:
y’ = (x4 – 8x2 + 5)’ = 4x3 – 16x.
4x3 – 16x = 0;
4х (х2 – 4) = 0;
4х (х – 2) (х + 2) = 0;
х1 = 0;
х2 = -2;
х3 = 2.
2. Промежутку [-3; 2] принадлежат все найденные точки, поэтому рассмотрим значение функции на концах отрезка и в точках экстремума.
При х = -3, у = 81 – 72 + 5 = 14.
При х = -2, у = 16 – 32 + 5 = -11.
При х = -0, у = 5.
При х = 2, у = 16 – 32 + 5 = -11.
Таким образом, yнаим = у(-2) = у(2) = -11, yнаиб = у(-3) = 14.
ответ: yнаим = -11, yнаиб = 14
В решении.
Объяснение:
не выполняя построения, определи, проходит ли график функции y=20x-40 через данные точки
A(1:-20)
B(0;-40)
C(5;60)
D(-5;-140)
E(-2;0)
F(4;40)
G(2;80)
H(10;240)
I(3;20)
K(-7;-100);
Нужно поочерёдно подставить известные значения х и у (координаты точки) в уравнение. Если левая часть равна правой, то проходит, и наоборот.
1) y=20x-40; A(1:-20);
-20 = 20*1 - 40
-20 = -20, проходит;
2) y=20x-40; B(0;-40);
-40 = 0 - 40
-40 = -40, проходит;
3) y=20x-40; C(5;60);
60 = 20*5 - 60
60 ≠ 40, не проходит;
4) y=20x-40; D(-5;-140)
-140 = 20*(-5) - 40
-140 = -140, проходит;
5) y=20x-40; E(-2;0);
0 = 20*(-2) - 40
0 ≠ -80, не проходит;
6) y=20x-40; F(4;40);
40 = 20*4 - 40
40 = 40, проходит;
7) y=20x-40; G(2;80);
80 = 20*2 - 40
80 ≠ 0, не проходит;
8) y=20x-40; H(10;240);
240 = 20*10 - 40
240 ≠ 160, не проходит;
9) y=20x-40; I(3;20);
20 = 20*3 - 40
20 = 20, проходит;
10) y=20x-40; K(-7;-100);
-100 = 20*(-7) - 40
-100 ≠ -180, не проходит.