В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
123abcde6
123abcde6
18.05.2023 02:44 •  Алгебра

с такой задачкой.) я не понял.
В заброшенной школе Скелет нашел 4 сундука со слаймами. В каждом сундуке р слаймов. Сколько слаймов у Скелета если р

Показать ответ
Ответ:
Elena407008
Elena407008
05.08.2022 21:57
Сначала разложим числитель. Там стоит разность квадратов   выражения х и выражения 5.
x^2 - 25 = x^2 - 5^2 = (x-5)(x+5).
Тогда неравенство примет вид:
(х+5)*(х-5) / (3 - х)  ≤  0;

Найдем нули. х+5 = 0.    х - 5 = 0.        3 - х = 0.
                        х = - 5 .     х = 5.               х = 3.
Нарисуем координатную прямую, отметим на ней эти 3 точки. Точки х = 5 и х = - 5 закрасим, так они пришли из числителя, точку х = 3 выколем, потому что на ноль делить нельзя. Эти 3 точки разделили координатную прямую на 4 части. Определим знаки неравенства на этих участках.  
Например, возьмем точку х = 6 и подставим ее к неравенство, получим
(6 + 5)*(6 - 5) /( 3 - 6) = - 11/3  < 0 .
Число отрицательное, поэтому правее х = 5 ставим минус. Дальше чередуем знаки. 
      +                           -                       +                              -
  [-5](3)[5]x
      
Получается, что неравенство меньше или равно нуля на интервалах 
[-5; 3) U [ 5; + ∞)
              
0,0(0 оценок)
Ответ:
ayazhankadyrov24
ayazhankadyrov24
30.10.2022 23:26
1)y=-\frac{x^3}3-2x^2+3

Для того, чтобы найти точки экстремума(точки минимума или максимума) нам нужно найти производную и приравнять ее к 0.

(Почему так? Как это работает?
Производная - скорость роста функции. Если значения производной отрицательны, то функция убывает. Если же значения производной положительны, то функция возрастает. Есть точки, в которых функция ни возрастает, ни убывает. В этих точки график производной проходит через ось Ох, то есть значение производной равно 0.)

y'=(-\frac{x^3}3-2x^2+3)'=(-\frac{x^3}3)'-(2x^2)'+(3)'=-x^2-4x
y'=0\\-x^2-4x=0\\x^2+4x=0\\x(x+4)=0\\x=0,x=-4

x=0,x=-4  - точки экстремума.

Для того, чтобы определить, где точка минимума, а где точка максимума нужно нарисовать координатную прямую, отметить на ней точки и определить знаки интервалов(как в методе интервалов). (см. рисунок)
Для того, чтобы определить знак интервала, подставляем любое значение из этого интервала в уравнение производной.

Пример: определим знак интервала  (0;+\infty)
Возьмем число: 1.
y'=-x^2-4=-1-4=-5\ \textless \ 0
Интервал отрицательный и т.д.

Там, где интервалы отрицательны(где отрицательны значения производной) сама функция убывает.
Там, где интервалы положительны, функция возрастает. (Таким методом определяют промежутки возрастания и убывания функций)

И так. Если функция сначала убывала, а потом проходя через какую-то точку начала возрастать, то, очевидно, она через точку минимума. (см. рисунок)
Если же возрастание меняется убыванием это, очевидно, точка максимума.

И так:
x=0  - точка максимума.
x=-4  - точка минимума.

обратить внимания, что для точек минимума и максимума не нужно искать значение функции в это точке, и не стоит записывать ее координаты так: (0;2) и тому подобное. Правильная запись выше.

2)\sqrt{x^2-1}=\sqrt{3}\\\sqrt{(x^2-1)^2}=\sqrt{(3^2)}\\x^2-1=3\\x^2=4\\x=б2

1)найдите точку экстремума функции: y=-x³/3-2x²+3 и определить их характер: 2)решите иррациональное
1)найдите точку экстремума функции: y=-x³/3-2x²+3 и определить их характер: 2)решите иррациональное
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота