Самостоятельная работа по теме: «Арифметическая прогрессия», 9 класс
Вариант 2
1. Последовательность (yn) задана формулой уn = -2n + n3. Найдите седьмой член этой последовательности.
2. Арифметическая прогрессия (xn), x1=5 и d=-5. Найдите пятый член этой прогрессии
3. Пятый член арифметической прогрессии (xn) равен 6, а девятый равен 14. Найдите разность этой прогрессии.
4. Найдите сумму тридцати пяти первых членов арифметической прогрессии,
если х1 = -9,5, а x35= 51,5.
5. В арифметической прогрессии (xn), x6 = 10, x9 = 40. Найдите x8?
6. Дана арифметическая прогрессия 4; 3,6; 3,2 … Сколько в этой прогрессии положительных членов?
а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.