Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Решение: Обозначим время до встречи автобусов за t, -cкорость V1 первого автобуса равна: V1=132/(t+50/60) -cкорость второго автобуса равна: V2=132/(t+1 12/60) Скорость сближения автобусов равна: 132/(t+50/60)+132/(t+1 12/60)=132/t 132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2) t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132 132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132 132t²+158,4t+132t²+110t=132t²+110t+158,4t+132 132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0 132t²-132=0 132t²=132 t²=132/132 t²=1 t=√1 t=1 Отсюда: -скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)= =132/(11/6)=72(км/час) -скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Обозначим время до встречи автобусов за t,
-cкорость V1 первого автобуса равна:
V1=132/(t+50/60)
-cкорость второго автобуса равна:
V2=132/(t+1 12/60)
Скорость сближения автобусов равна:
132/(t+50/60)+132/(t+1 12/60)=132/t
132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2)
t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132
132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132
132t²+158,4t+132t²+110t=132t²+110t+158,4t+132
132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0
132t²-132=0
132t²=132
t²=132/132
t²=1
t=√1
t=1
Отсюда:
-скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)=
=132/(11/6)=72(км/час)
-скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час