Тема производные решите 2 ! 1. найдите f'(п), если f(x)= cosx/x f'(2), если f(x)= (7-3x)⁴ 2. найдите все значения x, при которых f'(x)=0, если f(x)= sin 2x+√2x
Условие равносильности для решения неравенства вида logaf(x)>0(<0) Если logaf(x)>0(<0), то отсюда следует f(x)>0 (<0) и (a-1)(f(x)-1)>0 (<0) (х-3)lg(x+1) >0 Согласно условию равносильности знак выражения lg(x+1) совпадает со знаком выражения (10-1)((x+1)-1) в ОДЗ ОДЗ: (x+1)>0; (х-3)lg(x+1) >0⇒(x+1)(х-3)*9*x>0⇒x(x+1)(x-3)>0 x(x+1)(x-3)=0⇒x1=0; x2=-1;x3=3 Эти значения разбивают числовую прямую на 4 интервала: (-∞;-1); (-1;0); (0;3); (3;+∞) По методу интервалов в крайнем справа будет +, дальше идет чередование x(x+1)(x-3)>0, если x∈(-1;0)∨(3;+∞)
Если logaf(x)>0(<0), то отсюда следует
f(x)>0 (<0) и (a-1)(f(x)-1)>0 (<0)
(х-3)lg(x+1) >0
Согласно условию равносильности знак выражения lg(x+1) совпадает со знаком выражения (10-1)((x+1)-1) в ОДЗ
ОДЗ: (x+1)>0; (х-3)lg(x+1) >0⇒(x+1)(х-3)*9*x>0⇒x(x+1)(x-3)>0
x(x+1)(x-3)=0⇒x1=0; x2=-1;x3=3
Эти значения разбивают числовую прямую на 4 интервала:
(-∞;-1); (-1;0); (0;3); (3;+∞)
По методу интервалов в крайнем справа будет +, дальше идет чередование
x(x+1)(x-3)>0, если x∈(-1;0)∨(3;+∞)
6x² - 11x - 2 < 0
Рассмотрим квадратичную функцию у = 6x² - 11x - 2. Графиком этой функции является парабола, ветви которой направлены вверх.
Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение 6x² - 11x - 2 = 0:
D = (-11)² - 4 · 6 · (-2) = 121 + 48 = 169; √169 = 13
х₁ = (11 + 13)/(2 · 6) = 24/12 = 2
х₂ = (11 - 13)/(2 · 6) = -2/12 = -1/6
Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -1/6 и 2.
Покажем на чертеже, какие значения (по знаку) принимает функция на каждом из промежутков числовой оси (см. рис. в приложении).
х ∈ (-1/6; 2)ответ: (-1/6; 2).