Пусть x ч-время работы первой трубы, y ч-время работы второй трубы. Тогда 1/x - производительность первой трубы, 1/y - производительность второй трубы. Составим первое уравнение системы: 1/x+1/y=1/14.
1,5/x - новая производительность первой трубы. Составим второе уравнение системы:
1,5X+1/y=1/12/
Составим систему уравнений:
1/x+1/y=1/14
1,5/x+1/y=1/12
Решим алгебраического сложения. Вычтем из первого уравнения второе. Получим:
-0,5/x+0=1/14-1/12
-0,5/x=6/84-7/84
-0,5x=-1/84
x=0,5*84
x=42
Значит, время работы первой трубы - 42 часа. Тогда подставим вместо х 42 в первое уравнение системы, получим: 1/42+1/y=1/14, 1/y=1/14-1/42, 1/y=3/42-1/42, 1/y=2/42, 1/y=1/21, y=21. Значит, работая отдельно, вторая труба наполнит бассейн за 21 час.
54 варианта.
Объяснение:
По 2 натуральных слагаемых:
7 = 6+1 = 5+2 = 4+3 = 3+4 = 2+5 = 1+6
6 вариантов.
По 3 натуральных слагаемых:
7 = 5+1+1 = 4+2+1 = 4+1+2 = 3+3+1 = 3+2+2 = 3+1+3 = 2+2+3 = 2+4+1 = 2+3+2 = 2+1+4 = 1+3+3 = 1+2+4 = 1+4+2 = 1+5+1 = 1+1+5
15 вариантов.
По 4 натуральных слагаемых:
7 = 4+1+1+1 = 3+2+1+1 = 3+1+1+2 = 3+1+2+1 = 2+2+2+1 = 2+2+1+2 = 2+1+2+2 = 1+3+1+2 = 1+3+2+1 = 1+2+3+1 = 1+2+1+3 = 1+1+2+3 = 1+1+3+2 = 1+2+2+2 = 1+1+1+4
15 вариантов.
По 5 натуральных слагаемых:
7 = 3+1+1+1+1 = 2+2+1+1+1 = 2+1+2+1+1 = 2+1+1+2+1 = 2+1+1+1+2 = 1+2+2+1+1 = 1+2+1+2+1 = 1+2+1+1+2 = 1+1+2+1+2 = 1+1+2+2+1 = 1+1+1+2+2
11 вариантов.
По 6 натуральных слагаемых:
7 = 2+1+1+1+1+1 = 1+2+1+1+1+1 = 1+1+2+1+1+1 = 1+1+1+2+1+1 = 1+1+1+1+2+1 = 1+1+1+1+1+2
6 вариантов.
По 7 натуральных слагаемых:
7 = 1+1+1+1+1+1+1
1 вариант.
Всего 6+15+15+11+6+1 = 54 варианта.
Пусть x ч-время работы первой трубы, y ч-время работы второй трубы. Тогда 1/x - производительность первой трубы, 1/y - производительность второй трубы. Составим первое уравнение системы: 1/x+1/y=1/14.
1,5/x - новая производительность первой трубы. Составим второе уравнение системы:
1,5X+1/y=1/12/
Составим систему уравнений:
1/x+1/y=1/14
1,5/x+1/y=1/12
Решим алгебраического сложения. Вычтем из первого уравнения второе. Получим:
-0,5/x+0=1/14-1/12
-0,5/x=6/84-7/84
-0,5x=-1/84
x=0,5*84
x=42
Значит, время работы первой трубы - 42 часа. Тогда подставим вместо х 42 в первое уравнение системы, получим: 1/42+1/y=1/14, 1/y=1/14-1/42, 1/y=3/42-1/42, 1/y=2/42, 1/y=1/21, y=21. Значит, работая отдельно, вторая труба наполнит бассейн за 21 час.
ответ: 21 час.