У лотереї розігруються 16 грошових і 20 речових призів. Усього є 1800 лотерейних білетів. Яка ймовірність, придбавши один білет, не виграти жодного призу
a^2*x^2+ax+1-21a^2=0
из т. Виета
x1+x2=-1/a
x1*x2=1/a^2-21
---
x1*x2=(x1+x2)^2-21
x1^2+x1*x2+x2^2=21
(x1+x2/2)^2=21-3x^2/4
если правая часть отрицательна уравнение не имеет смысла, найдем те значения x2 при которых уравнение будет иметь смысл.
28-x2^2>0
-5<x2<5 так как корни целые.
Значит максимальное значение которые может принимать x2 это 5 (т.к. система симметрична x1 тоже будет <=5)
осталось понять, при x2=5 есть целые корни или нет, подставим в наше уравнение.
(x1+5/2)^2=3(28-25)/4
x1=(-5+-3)/2=-1;-4.
Ответ: наибольшее число которое может являться корнем это 5.
1) -c√10; 2) 6√3 * a^8; 3) -x^9 * √-x; 4) √-b * b^10 * c^13
Объяснение:
1) -c√10 = √10 * |c| = √10 * (-c) т.к. c <= 0 по условию, поэтому: √10 * (-c) = -c√10
2)√108a^16 = √9 * 12 * (a^8)^2 = √9 * 4 * 3 *(a^8)^2 = 3√4 *3 * (a^8)^2 = 6√3 * √(a^8)^2 = 6√3 * |a^8| = 6√3 * a^8
3) √x^-19 = √-x * x^18 = √-x * (x^9)^2 = √-x * |x^9| = √-x * (-x^9) = -x^9 * √-x
4) √-b^21 * c^26 = √-b * b^20 * (c^13)^2 = √-b * √(b^10)^2 * √(c^13)^2 = √-b * |b^10| * |c^13| = √-b * b^10 * c^13
Если что-то не правильно, пишите.
из т. Виета
x1+x2=-1/a
x1*x2=1/a^2-21
---
x1*x2=(x1+x2)^2-21
x1^2+x1*x2+x2^2=21
(x1+x2/2)^2=21-3x^2/4
если правая часть отрицательна уравнение не имеет смысла, найдем те значения x2 при которых уравнение будет иметь смысл.
28-x2^2>0
-5<x2<5 так как корни целые.
Значит максимальное значение которые может принимать x2 это 5 (т.к. система симметрична x1 тоже будет <=5)
осталось понять, при x2=5 есть целые корни или нет, подставим в наше уравнение.
(x1+5/2)^2=3(28-25)/4
x1=(-5+-3)/2=-1;-4.
Ответ: наибольшее число которое может являться корнем это 5.