В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
narigeevag71mariy
narigeevag71mariy
25.01.2020 21:48 •  Алгебра

Учительница загадала двузначное число. в этом числе десятков в 2 раза больше, чем единиц. если к этому числу прибавить число, записанное теми же цифрами, но в обратном порядке, то получится 33. найди это число.

Показать ответ
Ответ:
efimovap17
efimovap17
08.10.2020 21:53

число двузначное можно представить как 10a+b

1<= a,b <=9 a=2b

тоже число только наоборот можно представить как 10b+a

По условию (10a+b) + (10b+a) = 33

11a+11b=33

a+b=3

2b+b=3

b=1 a=2 Было загадано 21

Можно представить все двузначные числа, у которых количество десятко в 2 раза больше количества единиц 21 42 63 84. Заметим , что может быть только первое число так как в сумме с другим числом только это может дать 33, остальные больше 33 и не подходят.

Остается проверить сумму загаданного числа и обратного

21 + 12 = 33 Да подходит все правильно, ответ 21

0,0(0 оценок)
Ответ:
kpilipaka02
kpilipaka02
08.10.2020 21:53
Пусть в этом числе а число единиц,
тогда 2а число десятков
и наше число
10(2a)+a

по условию:

(10*(2a)+a)+(10*а+2а)=33
10*(3а)+3а=33=10*3+3

откуда а=1
значит наше число
21

Можно решить и так : так как мы получаем число 33, это значит , что и число десятков и число единиц полученного числа не превышает 2, иначе бы мы получили число в сумме большее, чем 33
А раз так, то единственное число, у которого число десятков вдвое превышает число единиц 21.

ответ 21
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота