( )Удав решил измерить свой рост и попросил попугая ему . Но лежать на месте удаву скучно, поэтому во время измерения он полз с постоянной скоростью. Попугай сначала от хвоста удава к его голове и насчитал при этом 80 своих шагов, а затем немедленно развернулся и на обратном пути к хвосту удава насчитал 20 своих шагов (и от хвоста к голове удава, и обратно попугай шёл с одной и той же скоростью). Чему равен рост удава в попугайских шагах?
a = 3
Объяснение:
Имеем выражение:
a^2 - 6 * a + 11.
Необходимо найти значение аргумента a, при котором значение выражения будет минимальным.
Здесь можно приравнивать значение выражения к нулю, можно решать квадратное уравнение, можно искать значение переменной методом подбора, но единственный практичный выделить у выражения квадрат суммы или разности двух чисел:
a^2 - 6 * a + 11 = a^2 - 2 * 3 * a + 3 * 3 + 2 = (a - 3)^2 + 2.
Получили сумму квадрата числа и двойки. Наименьшее значение суммы - 2, значит, a = 3.
ОДЗ первого неравенства находим из условия
х-2>0⇒x>2
x+2>0⇒x>-2
Значит, ОДЗ х>2, или х∈(2;+∞), а второго
(x-2)(x+x)>0 найдем решения методом интервалов.
х=2, х=-2,
-22
+ - +
х∈(-∞;-2)∪(2;+∞)
я ВЫДЕЛИЛ Вам жирным шрифтом ОДЗ, видите разницу? Так вот применение свойства
㏒ₐx+㏒ₐy=㏒ₐ(xy) расширяет область определения на интервал
(-∞;-2)
поэтому, решая первое неравенство системы, (x-3)*(x+3)>0
-33
+ - +
Вы получите лишний промежуток, а именно (-∞;-3), входящий в интервал (-∞;-2); его надо исключить из ответа.