Объяснение:
Находим границы фигуры, приравняв функции:
x² - 4 = -x - 2.
Получаем квадратное уравнение х²+ х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Искомая площадь фигуры равна интегралу:
S= \int\limits^1_{-2} {(-x-2- x^{2} +4} \, dx = \int\limits^1_{-2} {(- x^{2} -x+2)} \, dx =- \frac{x^3}{3}- \frac{ x^{2} }{2}+2x|_{-2}^1S=−2∫1(−x−2−x2+4dx=−2∫1(−x2−x+2)dx=−3x3−2x2+2x∣−21
Подставив пределы, получаем: S =((-1/3)-(1/2)+2*1) - ((8/3)-4/2+2*(-2)) =
= (7/6)-(-10/3) = 9/2 = 4,
Задать вопрос
Войти
АнонимМатематика04 июля 16:31
Пусть х1 и х2 - корни уравнения 2х^2-7х-3+0. Составьте квадратное уравнение, корнями которого являются числа: а) х1-2
и х2-2; б) 1/х1 и 1/х2
РЕКЛАМА
Как весело провести время всей семьей?
Наборы для выпечки «Печем Дома» уже в Пятерочке!
Перейти
Научите ребенка печь вкусные маффины и кексы!
Наборы для выпечки «Печем Дома» – вкусно, весело, полезно!
Лучший подарок для детей!
ответ или решение1
Антонова Саша
Имеем квадратное уравнение:
2 * x^2 - 7 * x - 3 = 0;
Для того, чтобы найти значения выражений из задачи, воспользуемся теоремой Виета:
x1 + x2 = 7/2;
x1 * x2 = -3/2;
1) Воспользуемся теоремой Виета снова:
(x1 - 2) + (x2 - 2) = x1 + x2 - 4 = 7/2 - 4 = -1/2;
(x1 - 2) * (x2 - 2) = x1 * x2 - 2 * x2 -2 * x1 + 4 = x1 * x2 - 2 * (x1 + x2) + 4 = -3/2 - 7 + 4 = -3/2 - 3 = -9/2;
Получим уравнение:
2 * x^2 + x - 9 = 0;
2) 1/x1 и 1/x2;
1/x1 + 1/x2 = (x1 + x2)/(x1 * x2) = 7/2 : (-3/2) = -7/3;
1/x1 * 1/x2 = 1/(x1 * x2) = -2/3;
3 * x^2 + 7 * x - 2 = 0.
Объяснение:
Находим границы фигуры, приравняв функции:
x² - 4 = -x - 2.
Получаем квадратное уравнение х²+ х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Искомая площадь фигуры равна интегралу:
S= \int\limits^1_{-2} {(-x-2- x^{2} +4} \, dx = \int\limits^1_{-2} {(- x^{2} -x+2)} \, dx =- \frac{x^3}{3}- \frac{ x^{2} }{2}+2x|_{-2}^1S=−2∫1(−x−2−x2+4dx=−2∫1(−x2−x+2)dx=−3x3−2x2+2x∣−21
Подставив пределы, получаем: S =((-1/3)-(1/2)+2*1) - ((8/3)-4/2+2*(-2)) =
= (7/6)-(-10/3) = 9/2 = 4,
Задать вопрос
Войти
АнонимМатематика04 июля 16:31
Пусть х1 и х2 - корни уравнения 2х^2-7х-3+0. Составьте квадратное уравнение, корнями которого являются числа: а) х1-2
и х2-2; б) 1/х1 и 1/х2
РЕКЛАМА
Как весело провести время всей семьей?
Наборы для выпечки «Печем Дома» уже в Пятерочке!
Перейти
Научите ребенка печь вкусные маффины и кексы!
Наборы для выпечки «Печем Дома» – вкусно, весело, полезно!
Перейти
Лучший подарок для детей!
Наборы для выпечки «Печем Дома» уже в Пятерочке!
Перейти
ответ или решение1
Антонова Саша
Имеем квадратное уравнение:
2 * x^2 - 7 * x - 3 = 0;
Для того, чтобы найти значения выражений из задачи, воспользуемся теоремой Виета:
x1 + x2 = 7/2;
x1 * x2 = -3/2;
1) Воспользуемся теоремой Виета снова:
(x1 - 2) + (x2 - 2) = x1 + x2 - 4 = 7/2 - 4 = -1/2;
(x1 - 2) * (x2 - 2) = x1 * x2 - 2 * x2 -2 * x1 + 4 = x1 * x2 - 2 * (x1 + x2) + 4 = -3/2 - 7 + 4 = -3/2 - 3 = -9/2;
Получим уравнение:
2 * x^2 + x - 9 = 0;
2) 1/x1 и 1/x2;
1/x1 + 1/x2 = (x1 + x2)/(x1 * x2) = 7/2 : (-3/2) = -7/3;
1/x1 * 1/x2 = 1/(x1 * x2) = -2/3;
Получим уравнение:
3 * x^2 + 7 * x - 2 = 0.